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Executive Summary 

This report follows previous work undertaken for Northland Regional Council (NRC) to define 

freshwater management units (FMUs). A key step in the definition of FMUs was to classify the 

region’s rivers for water quality management. The purpose of the “water quality management 

classification” is to broadly discriminate variation in the characteristics of the water bodies that 

are relevant to management including their current water quality state, values, and capacity 

for resource use.  

The original water quality management classification recommended by Snelder (2015) divided 

the region in to two classes, where river reaches were defined as hill or lowland, depending 

on the average upstream slope. The classification was mapped using a digital representation 

of the stream and rivers of the Northland region. This simple classification was recommended 

because variation in water quality in the region is complex, and attempts to discriminate finer 

scale patterns in the variation in general water quality in Northland were not successful. 

NRC determined that there may be advantages for regional land and water management if 

the characteristics of water bodies that are relevant to management were more finely 

discriminated than the original, two-class, water quality management classification. This report 

details an investigation of alternative classifications that used the most up-to-date data and 

statistical modelling to derive and test alternative classifications.  

Classifications were derived by first extracting site median values of several water quality 

variables that had been measured at monthly intervals for periods of between one and 19 

years at 63 sites distributed across Northland. Statistical cluster analysis was used to group 

the sites into 2, 3 and 4 classes based on the water quality data. Three types of statistical 

model were then used to determine relationships between the cluster-based site 

classifications and a suite of environmental predictors that represent the characteristics of 

each site’s upstream catchment. These relationships were used to make predictions of the 

water quality classes for all segments of a digital network representing the region’s rivers and 

produce maps of the alternative classifications. The ability of all classifications to explain 

variation in each of the observed water quality variables was assessed using analysis of 

variance (ANOVA) and a multi-variate form of ANOVA (called ADONIS). The performance of 

the statistically derived classifications was compared to the original management classification 

recommended by Snelder (2015). 

The ANOVA and ADONIS tests indicated that the classifications based on statistical clustering 

discriminated water quality variation significantly better than the original water quality 

management classification. The classes based on statistical clustering could be understood 

from analysis of the water quality data and described a gradient across the region from the 

highest to lowest water quality conditions. A key finding was that discrimination of water quality 

increased significantly when three classes were defined compared to two classes but that the 

increase in discrimination was less from three to four classes.  

The relationships between the cluster-based site classifications and environmental predictors 

were used to describe the environmental characteristics of the classes. The models indicated 

that aspects of catchment geology and catchment topography are strongly associated with 

water quality variation in the Northland region.  

The study results indicate that a water management classification that is defined using 

statistical modelling will discriminate regional water quality variation better than the original 

water quality management classification recommended by Snelder (2015). However, the 
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original classification is easily explained. By contrast, statistically-based classifications are not 

easily explained and do have subjective elements. This may make it difficult for the community 

to accept a statistically-based water quality management classification.   

The information presented in this report and the associated supplementary data provide a 

basis for NRC to consider alternatives for the water quality management classification. An 

important consideration is whether the increase in the discrimination of variation in water 

quality variation over the original classification is sufficiently advantageous that it outweighs 

the increased complexity and difficulty in explaining the classification. The decision to adopt 

an alternative classification is a subjective (political) one. This report does not recommend 

adoption of any alternative but does provide the information to assist that decision. 

The statistical approach to defining the classifications was limited by the number of sites with 

water quality data and the representativeness of these sites of regional water quality patterns. 

As a result, some environments that may be regarded as distinctive regionally will not be 

represented by the classifications. We therefore recommend that if any of the statistically 

defined classifications presented here were to be used, some refinement of the classification 

may be appropriate. The refinement could be carried out by incorporating ‘local knowledge’ 

which is not reflected in the site data and spatial modelling. Care would need to be taken to 

avoid generating many small-scale classes based on local knowledge as this would undermine 

the general objective of providing a succinct classification for management purposes. 
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1 Introduction 

This report follows previous work undertaken for Northland Regional Council (NRC) to define 

freshwater management units (FMUs) (Snelder, 2015). FMUs were designed to provide a 

regional spatial framework for managing river water quality and quantity in a new regional 

water plan that will implement the National Policy Statement – Freshwater Management 

(NPSFM). A key step in the definition of FMUs was to classify the region’s rivers for water 

quality management. The purpose of the “water quality management classification” was to 

broadly discriminate variation in the characteristics of the water bodies that are relevant to 

management including their values and capacity for resource use.  

A key assumption underlying the water quality management classification recommended by 

Snelder (2015) was that objectives and policies would aim to maintain the current state of 

water quality. The maintain-current-state requirement effectively sets the capacity for use of 

water bodies in each class. This means that a water quality management classification needs 

to discriminate variation in existing water quality. To be effective, the classification should also 

discriminate variation in other values of water bodies, including instream values and the 

economic values of their upstream catchments. In addition, a water quality management 

classification is ideally based on “inherent” factors (i.e. factors that are natural and unaffected 

by resource use, such as climate, topography and geology) so that the discrimination of the 

characteristics of water bodies is independent of existing activities. 

Snelder (2015) analysed Northland’s ‘general’ river water quality (i.e. water quality as defined 

by a mix of physical, chemical, and biological parameters) and found broad differences were 

associated with variation in catchment topography. Steep hill catchments are associated with 

relatively higher overall water quality than lowland (low gradient) catchments. Catchment 

topography not only discriminates many water quality parameters but is also broadly 

associated with differences in the economic value of upstream catchments (e.g., lowland 

areas tend to be more intensively farmed and urbanised than hill country areas) and other 

relevant management considerations such as river size and hydrological regime, which affect 

contaminant dilution, transport and assimilation.  

The original water quality management classification recommended by Snelder (2015) was 

therefore a simple one that comprised two classes: hills and lowlands. This classification was 

applied to a digital representation of the stream and rivers of the Northland region. The region’s 

rivers were represented as individual segments, each of which was classified on the basis the 

topography of the upstream catchment. Individual segments were classified as hill class if the 

average slope of the upstream catchment was greater than 10 degrees and lowland if the 

average slope was less than 10 degrees (Figure 1). 

Attempts by Snelder (2015) to discriminate finer scale patterns in the variation in general water 

quality in Northland were not successful. This is because variation in water quality in the region 

is complex. Individual water quality variables tend to vary independently (i.e. some variables 

have low correlation with other variables). In addition, there is variation in the strength of the 

relationships between the individual variables and catchment characteristics that are 

potentially used to define classes such as topography, geology, land cover, and climate.  
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Figure 1. The original water quality classification recommended by Snelder (2015). The 

classification is based on the average slope of upstream catchments being greater (“Hill” 

class) or less than (“Lowland”) 10°. 

Subsequent to the development of the original FMUs, NRC developed a new regional water 

plan. During that process, NRC determined that there may be advantages for regional land 

and water management if the characteristics of water bodies that are relevant to management 

were more finely discriminated than the original water quality management classification 

recommended by Snelder (2015). NRC approached LWP Ltd and Aqualinc Research Ltd to 

study alternative classifications.  

This report details an investigation of alternative water quality management classifications that 

aim to improve the discrimination of the original classification recommended by Snelder 

(2015). The approach taken in the present study has made a key assumption that a water 

quality management classification needs to discriminate variation in existing water quality. As 

for the original study, it has also been assumed that it is useful to understand the relationship 

between different water quality states and catchment characteristics. This study has therefore 

used statistical techniques applied to river water quality measurements made across 

Northland to explore these relationships. The statistical analysis can be broadly understood 

as three key steps: 

1. Statistical clustering was used to group sites into classes that have similar general 

water quality.  

2. Statistical spatial modelling was used to associate the classes with characteristics of 

their upstream catchments (e.g. topography, geology etc.).  

3. The statistical model was used to extrapolate the classes to all segments of the digital 

river network in Northland.  

This report describes the methods used in these analyses, the ability of the classes to 

discriminate water quality, and the performance of the spatial models. The report describes 
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the trade-off decision that would be needed to decide on an alternative water quality 

management classification and suggests the most suitable candidates from among the various 

options that were developed.  

2 Data 

As of the end of 2016, NRC had carried out monthly monitoring at 59 river sites for periods of 

between one and 19 years. This comprises 30 sites that have at least 10 years of monthly 

observations, and 29 recently established ‘priority catchment’ sites with up to three years of 

monthly observations. A variety of physical, chemical, and biological indicators of water quality 

are measured at these sites (Table 1). In addition, water quality and biological monitoring has 

been carried out by NIWA since 1989 at the 4 river sites in the Northland region as part of the 

National River Water Quality Network (NRWQN).  

NRC provided all available water quality data for these sites. In addition to water quality data, 

NRC provided metadata for sites, including: site name, location, identifier, NZMS260 grid 

reference, and NZReach number (as defined in the River Environment Classification (REC) 

geodatabase). 

Table 1. Summary of water quality used to define and test the classifications. The number of 

sites, the mean of the site median values and the range of the site median values. 

Water quality variable 
Units 

Number of Sites 
Mean of site 

medians 

Min:Max 

of site medians 

Ammoniacal Nitrogen g/m3 63 0.017 0.0025:0.1 

Dissolved Reactive 
Phosphorus 

g/m3 63 0.021 0.005:0.18 

Escherichia coli MPN/100ml 63 329 63:1046 

Nitrite/nitrate nitrogen g/m3 63 0.3 0.004:2.6 

Total Nitrogen g/m3 63 0.54 0.05:2.8 

Total Phosphorus g/m3 63 0.043 0.009:0.36 

Turbidity NTU 63 4.8 1:14 

Ammoniacal Nitrogen* g/m3 60 0.0086 0.0022:0.039 

Clarity m 60 1.3 0.3:2.2 

pH g/m3 63 7.3 6.6:7.9 

Dissolved Oxygen % 63 90 39:109 

Dissolved Oxygen  g/m3 63 9 3.8:11 

Taxa Richness NA 19 116 12:25 

MCI NA 19 37 68:141 

%EPT Taxa NA 19 20 0:60 

Chlorophyll a (benthic) mg/m3 37 40 1.6:233 

* pH adjusted 
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3 Methods 

3.1 Selection of sites and preparation of data 

For the analysis that follows, it was a requirement that all sites had a value for all the water 

quality variables. Therefore, the water quality variables were reduced to a core set for which 

a maximum number of sites had observations. The biological variables: Chlorophyll, MCI, 

Taxa Richness and % EPT Taxa, were excluded because these were measured at a relatively 

small subset of sites (Table 1). We also excluded the variables pH and dissolved oxygen. 

These variables are subject to diurnal variability and therefore the site median values are not 

necessarily a reliable characterisation of the central tendency for the site. This left a core set 

of variables (the first nine variables shown in Table 1) which were available at most of the 63 

sites.  

We calculated the median value of each of the nine core variables at each site. Where a site 

did not have data for a particular variable (i.e. for ammoniacal nitrogen and visual clarity at 

three sites) we substituted the mean value of the median values over the other sites with 

available observations. This treatment slightly reduces the reliability of the statistics 

associated with ammoniacal nitrogen and clarity but retained 63 sites for analysis. For all the 

analysis that follow we log (natural) transformed the median values of each variable so that 

they were approximately normally distributed.  

3.2 Cluster-based classifications of sites 

Cluster analysis or clustering was used to classify the sites so that sites in the same cluster 

(called a class) are more similar to each other than to sites in other classes. The similarity 

between sites is measured using the combined differences between all pairs of sites of each 

water quality variable. We used K-means clustering, which is a non-hierarchical clustering 

method (Crawley, 2002). The K-means algorithm clustered the 63 sites into a user-defined 

number of classes such that the sum of squares of differences from sites to the means of their 

assigned classes is minimized.  

Clustering solutions are influenced by the input data. To allow us to investigate the effects of 

the input data on the cluster solutions, we made three separate input data sets based on 

different treatments of the original data and made clusters from each dataset. First, before 

clustering, we scaled all log transformed variables to have a mean of 0 and a standard 

deviation of 1. This ensured that all variables had similar numeric ranges so that they had 

equal weight in the analyses that follow. These data were called the “raw” dataset.  

Second, if some of the input variables are correlated this will produce classifications that more 

strongly emphasise variation in those (correlated) variables at the expense of the other 

variables. Correlation among our water quality variables was very likely, especially between 

the nitrogen species because these variables are strongly related. To remove correlation in 

the input data we subjected the log transformed and scaled variables to rotated principle 

component analysis (PCA) (Crawley, 2002). We retained the scaled site scores on the first 

two components as an alternative input dataset. These data represent a simplified and 

uncorrelated (i.e. orthogonal) projection of the original data. The rotation maximises the 

correlation of the retained components with the original variables, enabling the components to 

be interpreted. This dataset was called the “PCARot” set. 

The third treatment of the input variables was to deliberately weight a variable to enhance its 

discrimination by the classification. In consultation with NRC we decided to weight the cluster 

solution to enhance the discrimination of Clarity. We achieved this by first finding the rotated 
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component of the PCARot that had the highest correlation with the original Clarity data. We 

then multiplied the site scores on this component by a factor of 3. This was called the “RotWt” 

set. 

The 63 sites were clustered into two, three or four classes using each of the three input data 

sets. This resulted in nine different classifications of the sites. Every site was assigned a 

membership of a class for each of the nine classifications. The names and methods for the 9 

cluster-based classifications are described in Table 2. 

Table 2. Names and descriptions of the 9 cluster-based classifications of sites.   

Name of 

classification 

Input data set Number of clusters 

Raw2Clusters Scaled logs of parameter medians 2 

Raw3Clusters Scaled logs of parameter medians 3 

Raw4Clusters Scaled logs of parameter medians 4 

PCARot2Clusters First 2 components of rotated PCA 2 

PCARot3Clusters First 2 components of rotated PCA 3 

PCARot4Clusters First 2 components of rotated PCA 4 

RotWt2Clusters Weighted rotated PCA 2 

RotWt3Clusters Weighted rotated PCA 3 

RotWt4Clusters Weighted rotated PCA 4 

 

3.3 Spatial modelling of cluster-based classifications 

The next step used spatial statistical modelling to determine the relationship between the 

cluster-based site classifications and a suite of environmental predictors that represent the 

characteristics of each site’s upstream catchment. We used three types of statistical model 

(from relatively simple to complex) to represent these relationships: 

1. Linear Discriminant Analysis (LDA). LDA is similar to regression in that it finds the best 

linear combination of the predictors that discriminates class membership (Crawley, 

2002). LDA solutions can therefore be expressed as linear models (i.e. an equation).  

2. Classification and Regression Trees (CART). A CART model is a tree-like structure 

that splits the sites into successively smaller groups for which the class membership 

of the group becomes more homogeneous (Breiman et al., 1984). The splits are 

defined by particular values of one of the predictors so that the tree can be understood 

as a set of decisions made using the predictors to “find” the cluster membership of 

each site.  

3. Random Forest (RF) model (Breiman, 2001). RF models are a machine learning 

technique and are an ensemble of many CART models, all varying subtly from each 

other. RF models generally always predict the response more accurately than CART 

models but are “black boxes” in that they cannot be expressed as either equations (like 

LDA) or simple tree diagrams (like CART).  

Our rationale for using these three modelling methods was to explore the impact of model 

complexity on the predictive performance of the modelling methods. In general, it is preferable 

that the basis for a water quality management classification can be easily understood and 

appreciated. It is also important, however, that the spatial modelling is accurate (i.e. that the 
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relationships between water quality measured at a site and the characteristics of its upstream 

catchment is robust). There is a trade-off between model complexity and prediction 

performance that can be demonstrated by the three modelling methods.  

The spatial framework for the spatial models was a digital representation of Northland’s 

drainage network extracted from the New Zealand river environment classification (REC, 

version 2) (Snelder and Biggs, 2002). The first version of the REC was used as the spatial 

framework to define the original water quality management classification and FMUs (Snelder, 

2015). The digital network was derived from a digital elevation model (DEM) with a spatial 

resolution of 50 m (Snelder and Biggs, 2002). Computer analysis of the DEM identified 

drainage paths, network segments and associated catchment boundaries. Version 2 of the 

REC improved some of the details of the representation of the region’s stream and rivers by 

the digital network. The digital network represents Northland’s rivers as 29,000 segments 

(delineated by upstream and downstream confluences) and their catchments, and is contained 

in a spatial database.  

The digital river network has been combined with spatial data layers describing the climate, 

topography, geology, and land cover of New Zealand to produce a large number of catchment 

characteristics for each network segment (Leathwick et al., 2011). We extracted from these 

data several predictors that described the character of the catchments upstream of the 

monitoring sites and used them as inputs to the statistical models ( 

Name Description Units Land cover 

predictor? 

us_catarea Area of the upstream catchment m2 NO 

us_rain Mean annual rainfall of the upstream catchment mm NO 

us_pet Mean annual potential evapotranspiration of the upstream 

catchment 

mm/yr NO 

QMean Mean annual stream flow  m3/s NO 

seg_elev Mean elevation of the river segment M ASL NO 

us_lakePerc Percentage of landcover in lakes in the upstream catchment % NO 

us_elev Mean elevation of the upstream catchment M ASL NO 

us_slope Mean slope of the upstream catchment degrees NO 

us_tmin Catchment average mean June air temperature  degrees C x 10 NO 

us_twarm Catchment average mean January air temperature  degrees C x 10 NO 

us_rnvar Catchment average coefficient of variation of annual rainfall mm/yr NO 

us_rd10 Catchment average frequency of rainfall > 10mm days/mo NO 

us_rd20 Catchment average frequency of rainfall > 20mm days/mo NO 

us_rd100 Catchment average frequency of rainfall > 100mm days/mo NO 

*us_hard Catchment average induration or hardness value  Ordinal NO 

*us_phos Catchment average phosphorous Ordinal NO 

*us_psize Catchment average particle size Ordinal NO 

*usCalcium Catchment average calcium Ordinal NO 

us_IntensiveAg Percentage landcover in intensive agriculture based on 

LCDBV3 in the upstream catchment 

% Yes 
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Table 3). 

Some of the input predictors represent catchment land cover which reflects human activities 

(i.e. land use) whereas other predictors represent “inherent” catchment characteristics such 

as climate, topography and geology. Ideally a water quality management classification would 

be based only on “inherent” catchment characteristics and would be independent of human 

activities. However, we recognised that disentangling these two aspects is difficult due to the 

strong association between “inherent” catchment characteristics and human activities. In 

addition, excluding land use from statistical models of catchment water quality may reduce 

model performance significantly due to the strong relationships between the two (Larned et 

al., 2016). We therefore produced two sets of spatial models. The first set used all available 

predictors, including predictors that represent land cover ( 

us_PastoralLight Percentage landcover in light pasture based on LCDBV3 in 

the upstream catchment 

% Yes 

us_NativeForest Percentage landcover in native forest based on LCDBV3 in 

the upstream catchment 

% Yes 

us_Urban Percentage urban landcover based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Scrub Percentage landcover in scrub based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Wetland Percentage landcover in wetland based on LCDBV3 in the 

upstream catchment 

% Yes 

us_ExoticForest Percentage landcover in exotic forest based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Bare Percentage landcover in bare land based on LCDBV3 in the 

upstream catchment 

% Yes 

Name Description Units Land cover 

predictor? 

us_catarea Area of the upstream catchment m2 NO 

us_rain Mean annual rainfall of the upstream catchment mm NO 

us_pet Mean annual potential evapotranspiration of the upstream 

catchment 

mm/yr NO 

QMean Mean annual stream flow  m3/s NO 

seg_elev Mean elevation of the river segment M ASL NO 

us_lakePerc Percentage of landcover in lakes in the upstream catchment % NO 

us_elev Mean elevation of the upstream catchment M ASL NO 

us_slope Mean slope of the upstream catchment degrees NO 

us_tmin Catchment average mean June air temperature  degrees C x 10 NO 

us_twarm Catchment average mean January air temperature  degrees C x 10 NO 

us_rnvar Catchment average coefficient of variation of annual rainfall mm/yr NO 

us_rd10 Catchment average frequency of rainfall > 10mm days/mo NO 

us_rd20 Catchment average frequency of rainfall > 20mm days/mo NO 

us_rd100 Catchment average frequency of rainfall > 100mm days/mo NO 

*us_hard Catchment average induration or hardness value  Ordinal NO 

*us_phos Catchment average phosphorous Ordinal NO 
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Table 3). The second set of models were fitted using a subset of predictors that did not include 

land cover (i.e. the second set of models used only “inherent” catchment characteristics as 

predictors). Our rationale for defining two sets of spatial models was to explore the impact of 

choice of predictors on the performance of the models.  

In total, six different model-predictor set combinations (three model methods and two sets of 

input predictors) were applied to estimate the nine different cluster sets (i.e. 54 models). The 

fitted models were used to predict the class membership for all 29,000 segments of the digital 

river network representing the Northland region. The predictions were used to produce maps 

of the region for all 54 models, with all river segments colour coded to reflect their assigned 

classes.  

 

 

*us_psize Catchment average particle size Ordinal NO 

*usCalcium Catchment average calcium Ordinal NO 

us_IntensiveAg Percentage landcover in intensive agriculture based on 

LCDBV3 in the upstream catchment 

% Yes 

us_PastoralLight Percentage landcover in light pasture based on LCDBV3 in 

the upstream catchment 

% Yes 

us_NativeForest Percentage landcover in native forest based on LCDBV3 in 

the upstream catchment 

% Yes 

us_Urban Percentage urban landcover based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Scrub Percentage landcover in scrub based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Wetland Percentage landcover in wetland based on LCDBV3 in the 

upstream catchment 

% Yes 

us_ExoticForest Percentage landcover in exotic forest based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Bare Percentage landcover in bare land based on LCDBV3 in the 

upstream catchment 

% Yes 
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Table 3. Model predictors used by the spatial models.  

 

*The variables usHardness and usParticleSize describe the physical character of the catchment regolith 
and usPhosphorus and usCalcium characterise its fertility based on values assigned to LRI top-rock  
categories by (Leathwick et al., 2003).  

 

Name Description Units Land cover 

predictor? 

us_catarea Area of the upstream catchment m2 NO 

us_rain Mean annual rainfall of the upstream catchment mm NO 

us_pet Mean annual potential evapotranspiration of the upstream 

catchment 

mm/yr NO 

QMean Mean annual stream flow  m3/s NO 

seg_elev Mean elevation of the river segment M ASL NO 

us_lakePerc Percentage of landcover in lakes in the upstream catchment % NO 

us_elev Mean elevation of the upstream catchment M ASL NO 

us_slope Mean slope of the upstream catchment degrees NO 

us_tmin Catchment average mean June air temperature  degrees C x 10 NO 

us_twarm Catchment average mean January air temperature  degrees C x 10 NO 

us_rnvar Catchment average coefficient of variation of annual rainfall mm/yr NO 

us_rd10 Catchment average frequency of rainfall > 10mm days/mo NO 

us_rd20 Catchment average frequency of rainfall > 20mm days/mo NO 

us_rd100 Catchment average frequency of rainfall > 100mm days/mo NO 

*us_hard Catchment average induration or hardness value  Ordinal NO 

*us_phos Catchment average phosphorous Ordinal NO 

*us_psize Catchment average particle size Ordinal NO 

*usCalcium Catchment average calcium Ordinal NO 

us_IntensiveAg Percentage landcover in intensive agriculture based on 

LCDBV3 in the upstream catchment 

% Yes 

us_PastoralLight Percentage landcover in light pasture based on LCDBV3 in 

the upstream catchment 

% Yes 

us_NativeForest Percentage landcover in native forest based on LCDBV3 in 

the upstream catchment 

% Yes 

us_Urban Percentage urban landcover based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Scrub Percentage landcover in scrub based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Wetland Percentage landcover in wetland based on LCDBV3 in the 

upstream catchment 

% Yes 

us_ExoticForest Percentage landcover in exotic forest based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Bare Percentage landcover in bare land based on LCDBV3 in the 

upstream catchment 

% Yes 
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3.4 A priori classifications 

We defined six additional classifications that were based on combinations of REC categories 

and the slope classification used by the original classification recommended by Snelder 

(2015). We refer to these as a priori classifications because they were not informed by the 

water quality data in the way that the cluster based classifications were. Rather we used prior 

knowledge of the likely drivers of river water quality variation across Northland to formulate 

alternative classifications. The classifications used the original slope classification and existing 

REC-based categories to discriminate differences in catchment topography and geology.  

These a priori classifications have the advantage that their definition is less complicated than 

the statistically derived classifications. A description of the six a priori classifications are 

provided in Table 4. 

Table 4. The a priori classifications based on REC attribute combinations 

Name Description 

SlopeClassification 

This classification represents the original classification recommended by 

Snelder (2015). REC version 1 upstream slope attribute divided into two 

classes with stream segments above 10o in the “1” class, and those 

below in class “0”. 

GeologyClassification 

REC version 1 Geology level divided into two classes, with soft 

sedimentary, volcanic acidic and volcanic basic in class “1” and all other 

geology categories in class “0” This distinction recognises that class 1 

geology is expected to be naturally more enriched with nutrients than 

class 2 (Snelder and Biggs, 2002).   

TopoClassification 
REC version 1 Source of Flow level divided into two with lake and 

lowland sourced rivers in class “1”, and hill sourced rivers in class “0”.  

SlopeGeologyClassification 
A four class classification created by combining the above slope and 

geology classifications. 

SlopeTopoClassification 
A four class classification created by combining the above slope and 

source of flow classifications. 

GeolTopoClassification 
A four class classification created by combining the above geology and 

source of flow classifications 

 

3.5 Assessment of cluster-based classification performance 

The ability of all classifications to explain variation in each of the observed water variables was 

assessed using analysis of variance (ANOVA). The ANOVA r2 value was used as a measure 

of discrimination of water quality variation. This resulted in nine ANOVA tests for each 

classification (one for each of the water quality variables represented in the raw dataset). 

In addition, we applied a multi-variate form of ANOVA (ADONIS) to the whole water quality 

dataset in a single analysis. ADONIS uses a dissimilarity matrix as the input, which we 

calculated by applying a Euclidean distance measure to the raw water quality data (Anderson, 

2001). The ADONIS r2 was used as a measure of discrimination of multivariate water quality 

variation. 
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3.6 Evaluating spatial models of cluster-based classifications 

3.6.1 Spatial model performance 

The performance of the spatial modelling of the cluster-based classifications was evaluated 

by the fitted misclassification rates of the respective LDA, CART and RF models. The 

misclassification rate is the proportion of sites that are incorrectly allocated to a class by the 

model. The fitted misclassification rate describes how well the model predicted the class of 

sites in the fitting dataset. As for all statistical models, the fitted performance is higher than the 

expected performance of the model to predict the class of sites that are not part of fitting 

dataset. We note that a more objective test of performance would be to use a cross validation 

procedure to assess the performance when individual sites are held out of the fitting data. This 

analysis was beyond the scope of this study and we assumed that relative difference in 

performance of the methods was indicated by the fitted misclassification rates. 

3.6.2 Relationships with predictors 

In addition to the performance of the different spatial models, the model structures, and the 

relative importance of the model predictors can provide insight into the environmental 

characteristics that discriminate the clusters.  We examined these relationships in three ways. 

First, we assessed the average value of each predictor in each class. This analysis indicates 

how the classes differ environmentally from each other and where the classes sit on the 

environmental gradient represented by the predictors. Second, for e RF models we examined 

the importance measure for all predictors included in the model. RF model importance 

quantifies the contribution of each predictor to the model prediction accuracy (Cutler et al., 

2007). Third, we used partial dependence plots (PDPs) to describe the fitted predictor-

response relationships (Cutler et al., 2007). A PDP shows the marginal contribution of a 

predictor to a response variable and can be interpreted as an approximation of the fitted 

predictor-response relationships.  

4 Results 

4.1 Water quality classification 

4.1.1 Characterisation of regional water quality variation 

There was considerable variation in the site median values of the water quality variables 

(Table 1). This variation was summarised by a PCA performed on the site median log 

transformed and scaled water quality variables. A biplot of the rotated PCA indicates that 

different groups of variables were correlated (Figure 2). The variables clarity, dissolved 

reactive phosphorus and turbidity were correlated (clarity inversely to dissolved reactive 

phosphorus and turbidity) and were most correlated with the first principle component. The 

nitrogen species and E. coli were most correlated with the second axis and each other. This 

indicates that the two groups of variables (i.e. clarity, dissolved reactive phosphorus and 

Turbidity versus the nitrogen species and E. coli) were relatively independent of each other 

(Figure 2). 
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Figure 2. Biplot of the rotated PCA performed on the log transformed and scaled water 

quality variables.  

4.1.2 Explanation of variation in regional water quality by cluster models 

The ability of all site classifications to explain variation in each of the observed water variables 

is described by ANOVA r2 and ADONIS r2 values shown in Table 5. For the three sets of 

cluster-based classifications there was a general and expected pattern of increasing r2 values 

with increasing number of classes. Another clear pattern was the superior performance of the 

cluster-based classifications compared to the REC-based classifications.  

The r2 values for the raw two class cluster-based classifications were all superior to the original 

water quality management classification based on two slope categories. This confirms the 

assumption that a cluster-based classification is likely to better discriminate water quality than 

the original water quality management classification.  

The rotated PCA version of the cluster-based classification (PCARot) had lower r2 values for 

most water quality variables than the cluster-based classification based on the raw data (Raw). 

This was true for all levels of detail (2, 3 and 4 clusters). The PCARot cluster-based 

classification had higher r2 values for some variables (e.g. Clarity at the 4-cluster level, Nitrate-

nitrogen across all levels). This indicates that there was a small effect of correlation on the 

relative weighting of variables associated with the clustering based on the Raw data. 

The weighted rotated PCA version of the cluster-based classification (RotWt) had higher r2 

values for Clarity, Turbidity and Total Phosphorus than the classification based on the raw 

data (Raw). The increased discrimination of these three variables as a result of weighting the 

Clarity gradient arise because these variables are correlated (Figure 2). All other variables 

had lower r2 values than the cluster-based classification based on the raw data (Raw). This is 
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an expected outcome that demonstrates that enhancing the discrimination of a specific water 

quality gradient comes at the expense of the discrimination of the variables that are not 

correlated with that gradient.  
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Table 5. Explanation of the water quality observations by the site classifications.The table shows r2 values for ANOVA tests performed on the 

individual water quality variables and r2 values for the ADONIS test. The r2 values are coloured (relatively) from highest (red) to lowest 

(green). 
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Ammoniacal nitrogen 0.46 0.61 0.72 0.43 0.48 0.6 0.24 0.39 0.48 0.18 -0.02 0.01 0.16 0.17 -0.01 

Dissolved reactive phosphorus 0.26 0.4 0.52 0.15 0.26 0.39 0.26 0.47 0.44 0.04 -0.02 0.02 0 0.04 0 

Escherichia coli 0.25 0.3 0.35 0.26 0.21 0.27 -0.01 0.03 0.1 0.03 -0.01 0.09 0.06 0.1 0.09 

Nitrite/nitrate nitrogen 0.37 0.42 0.49 0.53 0.62 0.65 -0.02 0 0.18 0.33 0.07 0.02 0.52 0.32 0.08 

Total nitrogen 0.5 0.52 0.66 0.55 0.52 0.62 0.04 0.09 0.27 0.28 0 0 0.35 0.27 -0.01 

Total phosphorus 0.34 0.58 0.6 0.2 0.46 0.56 0.45 0.65 0.63 0.06 -0.01 0.03 0.04 0.08 0.02 

Turbidity 0.26 0.38 0.44 0.13 0.45 0.57 0.47 0.48 0.62 0.05 -0.01 0.01 0.03 0.04 -0.01 

Ammoniacal nitrogen 0.32 0.53 0.58 0.24 0.34 0.45 0.21 0.43 0.42 0.05 -0.01 -0.01 0.04 0.04 -0.01 

Visual clarity 0.16 0.44 0.4 0.04 0.38 0.53 0.47 0.46 0.7 0.02 -0.02 0.02 -0.01 0.03 0 

Mean of r2 values 0.33 0.46 0.53 0.28 0.41 0.52 0.24 0.33 0.43 0.11 0 0.02 0.13 0.12 0.02 

ADONIS 0.37 0.53 0.6 0.33 0.47 0.57 0.28 0.4 0.5 0.15 0.01 0.04 0.19 0.17 0.05 
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4.1.3 Water quality characteristics of the classifications 

The water quality characteristics of each class for each of the cluster-based classifications are 

summarised by the mean of the site medians for each water quality variable. Table 6 shows 

the water quality characteristics for two classifications: Raw3Clusters and Raw4Cluster (the 

results for all classifications have been provided as supplementary data). A map of the 63 

water quality monitoring sites coded according to their membership of the Raw3Clusters 

classification is shown in Figure 3. Table 6 indicates that class 2 of the Raw3Clusters 

classification comprised rivers and streams that are characterised by relatively poor water 

quality (i.e. compared to the region). Class 2 had the highest mean median site concentrations 

of all water quality variables, except for Nitrite/nitrate-nitrogen, which was highest for class 1. 

Class 3 had the highest water quality overall with lower concentrations of all chemical variables 

and E. coli. For Raw4Clusters classification, the overall ranking of the classes from highest to 

lowest water quality is 2,1,4,3.  The ranking is generally the same for the individual variables, 

except for DRP and TP where classes 2 and 1 switch, and Nitrite/nitrate nitrogen where 

classes 3 and 4 switch. 

A complete version of this table for all cluster classifications is provided in the supplementary 

file called “AllWQVariableMedians.csv”. 

Table 6. Water quality variable medians for each cluster in the Raw3Clusters and 

Raw4Clusters classifications. See Table 1 for details of the water quality variables including 

measurement units. Values are coloured (relatively) from highest water quality (green) to 

poorest water quality (red). 

Classification: Raw3Clusters Raw4Clusters 

Cluster class: 1 2 3 1 2 3 4 

Number of sites: 33 6 24 21 8 6 28 

Water quality variable               

Ammoniacal nitrogen 0.015 0.044 0.0068 0.01 0.005 0.044 0.017 

Dissolved reactive 
phosphorus 0.016 0.054 0.0082 0.0075 0.018 0.054 0.016 

Escherichia coli 330 600 200 240 170 600 340 

Nitrite/nitrate nitrogen 0.34 0.3 0.038 0.11 0.014 0.3 0.36 

Total nitrogen 0.55 0.91 0.22 0.32 0.15 0.91 0.57 

Total phosphorus 0.033 0.12 0.021 0.021 0.025 0.12 0.039 

Turbidity 4.9 9 3.2 3.7 2.1 9 4.9 

Ammoniacal nitrogen 0.0073 0.018 0.0051 0.0055 0.0042 0.018 0.0084 

Clarity 1.2 0.71 1.6 1.4 1.8 0.71 1.2 

 

  



 

 Page 22 

 

 

Figure 3. Map of the 63 water quality monitoring sites coded according to their membership 

of the Raw3Clusters classification.  

4.2 Spatial models 

4.2.1 Model performance 

The performance of the spatial models is quantified by the fitted misclassification rates shown 

in Table 7. The random forest model returned the lowest misclassification rates (Table 7). The 

performance (i.e. misclassification rate) for the RF models were not affected by the exclusion 

of the land cover (LC) predictors. The performance of the LDA and CART models was 

decreased by a small margin for most of the classifications.   

The CART models failed to discriminate some classes (i.e. sites in the non-discriminated class 

were assigned to alternative (incorrect) classes by the CART model). For example, class 2 of 

the Raw3Clusters classification was not discriminated by the CART model. This occurred 

regardless of whether the predictors included the land cover predictors. This results in some 

classes not being represented on the maps that are based on predictions from these models. 

See the supplementary output “ClassificationPlots.PDF” and Figure 5. 
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Table 7. Fitted misclassification rates (% of sites) of the spatial models of the cluster-based 

classifications. 

Model and 
predictors 

Cluster-based classification 
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RF-All 0 0 0 0 0 0 0 0 0 

RF-noLC 0 0 0 0 0 0 0 0 0 

LDA-All 6.4 3.17 4.8 6.4 12.7 6.4 7.9 6.4 9.5 

LDA-noLC 6.4 6.4 6.4 7.9 20.6 11.1 14.3 14.3 17.5 

*CART-All 12.7 17.5 55.6 9.5 19.1 19.1 12.7 15.9 31.8 

*CART-noLC 15.9 17.5 30.2 11.1 23.8 22.2 12.7 20.6 30.2 
* Note that the CART models failed to discriminate some classes. 

4.2.2 Relationships with predictors 

Table 8 shows the 10 most important predictors for the RF models that used only “inherent” 

catchment characteristics as predictors (i.e. no land cover predictors). The most important 

predictors used by the RF models (over all models) were us_hard and us_slope. This indicates 

aspects of catchment geology and catchment topography are strongly associated with water 

quality variation in the Northland region.  

When land cover was used as a predictor the variables us_IntensiveAg also had high 

importance. However, model performance did not significantly decrease when the land cover 

predictors were excluded from the models (Table 7). This indicates that variation in the 

proportion of catchment occupied by agricultural land cover (i.e. us_IntensiveAg) is strongly 

associated with the non-land cover variables (e.g. mean catchment slope, us_slope). This 

means the inclusion of us_IntensiveAg in the model is effectively redundant and that the 

proportion of catchment in agricultural land is strongly associated with the topography of 

catchments in Northland.  
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Table 8. Ranked importance of the top ten predictors within the Random Forest models. The 

results are for models that used only “inherent” catchment characteristics as predictors (i.e. 

no land cover predictors). The numbers show the importance rank within each model. The 

order of the predictors is based on the mean importance rank over all models. See  

Table 3 for an explanation of each of the predictor variables. Colours range from green 

(rank=1) to red (rank=17)

Name Description Units Land cover 

predictor? 

us_catarea Area of the upstream catchment m2 NO 

us_rain Mean annual rainfall of the upstream catchment mm NO 

us_pet Mean annual potential evapotranspiration of the upstream 

catchment 

mm/yr NO 

QMean Mean annual stream flow  m3/s NO 

seg_elev Mean elevation of the river segment M ASL NO 

us_lakePerc Percentage of landcover in lakes in the upstream catchment % NO 

us_elev Mean elevation of the upstream catchment M ASL NO 

us_slope Mean slope of the upstream catchment degrees NO 

us_tmin Catchment average mean June air temperature  degrees C x 10 NO 

us_twarm Catchment average mean January air temperature  degrees C x 10 NO 

us_rnvar Catchment average coefficient of variation of annual rainfall mm/yr NO 

us_rd10 Catchment average frequency of rainfall > 10mm days/mo NO 

us_rd20 Catchment average frequency of rainfall > 20mm days/mo NO 

us_rd100 Catchment average frequency of rainfall > 100mm days/mo NO 

*us_hard Catchment average induration or hardness value  Ordinal NO 

*us_phos Catchment average phosphorous Ordinal NO 

*us_psize Catchment average particle size Ordinal NO 

*usCalcium Catchment average calcium Ordinal NO 

us_IntensiveAg Percentage landcover in intensive agriculture based on 

LCDBV3 in the upstream catchment 

% Yes 

us_PastoralLight Percentage landcover in light pasture based on LCDBV3 in 

the upstream catchment 

% Yes 

us_NativeForest Percentage landcover in native forest based on LCDBV3 in 

the upstream catchment 

% Yes 

us_Urban Percentage urban landcover based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Scrub Percentage landcover in scrub based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Wetland Percentage landcover in wetland based on LCDBV3 in the 

upstream catchment 

% Yes 

us_ExoticForest Percentage landcover in exotic forest based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Bare Percentage landcover in bare land based on LCDBV3 in the 

upstream catchment 

% Yes 
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Predictor variable 

Cluster-based classification 
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us_hard 2 1 1 9 1 4 1 1 2 

us_slope 5 3 2 1 2 5 8 10 3 

us_elev 4 2 6 2 4 2 9 8 7 

us_rd10 6 11 5 4 5 1 3 2 12 

us_phos 11 8 10 15 3 6 2 5 1 

us_rain 1 7 3 3 9 7 11 4 17 

us_rd20 3 6 4 11 14 3 12 3 9 

us_twarm 8 5 9 7 12 10 7 11 4 

us_rnvar 9 9 8 5 6 9 15 6 6 

us_psize 10 4 11 14 8 8 5 9 5 

 

Figure 4 shows the PDP for the random forest model of the Raw3Clusters classification. The 

PDP indicates that the marginal probability that a site belongs to class 2 of the classification 

decreases with increasing value of us_hard, us_slope and us_psize. The PDP indicates that 

the probability that a site belongs to class 2 of the classification increases with increasing 

value of us_twarm. By contrast, the PDP indicates that class 3 has the opposite relationships 

with the predictors to class 2 and class 1 has relationships that are intermediate to those of 

classes 2 and 3 (Figure 4).  
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Figure 4. Partial plots of the top five predictors for the random forest model of the 

Raw3Clusters classification. See  

Name Description Units Land cover 

predictor? 

us_catarea Area of the upstream catchment m2 NO 

us_rain Mean annual rainfall of the upstream catchment mm NO 

us_pet Mean annual potential evapotranspiration of the upstream 

catchment 

mm/yr NO 

QMean Mean annual stream flow  m3/s NO 

seg_elev Mean elevation of the river segment M ASL NO 

us_lakePerc Percentage of landcover in lakes in the upstream catchment % NO 

us_elev Mean elevation of the upstream catchment M ASL NO 

us_slope Mean slope of the upstream catchment degrees NO 

us_tmin Catchment average mean June air temperature  degrees C x 10 NO 

us_twarm Catchment average mean January air temperature  degrees C x 10 NO 

us_rnvar Catchment average coefficient of variation of annual rainfall mm/yr NO 

us_rd10 Catchment average frequency of rainfall > 10mm days/mo NO 

us_rd20 Catchment average frequency of rainfall > 20mm days/mo NO 

us_rd100 Catchment average frequency of rainfall > 100mm days/mo NO 
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Table 3 for an explanation of each of the predictor variables. The numbers in brackets are 

the importance values of the predictors.  

The environmental characteristics of the cluster-based classifications can also be evaluated 

by the mean value of the predictor variables for all segments that the spatial model has 

assigned to a particular class. Table 9 displays the mean values of the top eight predictors for 

the RF models of the Raw3Clusters and Raw4Clusters classifications (the results for all 

classifications have been provided as supplementary data). Table 9 shows for the 

Raw3Clusters classification that the classes are ranked (from highest to lowest) 2,1,3 in terms 

of mean catchment geological hardness, slope and rainfall (indicated by the predictors 

us_hard, us_slope, us_rain, us_rd20 and us_rd10). This ranking is 3, 4, 1 and 2 for the 

Raw4Clusters classification. It is noted that the numbers used to identify the class names are 

arbitrarily defined by the K-means clustering algorithm.  

The environmental characterisation of the classifications provided by PDPs and tabulations of 

mean values of predictors can be used to describe the classes in narrative terms. For example, 

Figure 4 and Table 9 indicates that class 2 of the Raw3Clusters classification comprised rivers 

and streams with catchments that are characterised by relatively (i.e. compared to the region) 

soft geology, low slopes and low rainfall.  

A complete version of this table for all cluster-based classifications and models with all 

predictors and just with fixed predictors, is provided in the supplementary file called 

‘AllPredictorMeans.csv’. 

 

Table 9. Mean values of the Raw3Clusters and Raw4Clusters classifications for the top eight 

predictors for the Random Forest models. Cells are coloured from high (Green) to low (red). 

Classification: Raw3Clusters Raw4Clusters 

Cluster class 1 2 3 1 2 3 4 

*us_hard Catchment average induration or hardness value  Ordinal NO 

*us_phos Catchment average phosphorous Ordinal NO 

*us_psize Catchment average particle size Ordinal NO 

*usCalcium Catchment average calcium Ordinal NO 

us_IntensiveAg Percentage landcover in intensive agriculture based on 

LCDBV3 in the upstream catchment 

% Yes 

us_PastoralLight Percentage landcover in light pasture based on LCDBV3 in 

the upstream catchment 

% Yes 

us_NativeForest Percentage landcover in native forest based on LCDBV3 in 

the upstream catchment 

% Yes 

us_Urban Percentage urban landcover based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Scrub Percentage landcover in scrub based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Wetland Percentage landcover in wetland based on LCDBV3 in the 

upstream catchment 

% Yes 

us_ExoticForest Percentage landcover in exotic forest based on LCDBV3 in the 

upstream catchment 

% Yes 

us_Bare Percentage landcover in bare land based on LCDBV3 in the 

upstream catchment 

% Yes 
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Number of sites 33 6 24 21 8 6 28 

Predictor               

(3 class rank,4 class 
rank,units)        

us_hard (1,1,ordinal) 3.1 2 3.6 3.5 3.8 2 3.2 

us_elev (2,6,M ASL) 100 51 201 196 284 50 99 

us_slope (3,2,degrees) 3.1 2.2 3.6 3.3 4.2 2.2 3.1 

us_psize (4,11,ordinal) 2.2 1.7 3.6 3.2 4.2 1.7 2.4 

us_twarm (5,9,oC x 10) 187 190 183 183 178 190 187 

us_rd20 (6,4,days/mo) 1.6 1.4 1.8 1.9 1.7 1.4 1.5 

us_rain (7,3,mm) 1499 1414 1643 1734 1621 1407 1477 

us_phos (8,10,ordinal) 1.4 1.3 2.2 2 2.9 1.3 1.5 

 

4.2.3 Mapped classifications  

Maps of example classifications are shown in Figure 5. The maps show the predictions for the 

Raw3Clusters classification made using the three modelling methods: LDA, CART and RF.  

The different modelling methods resulted in differences in the predictions and therefore the 

maps shown in Figure 5. Figure 5 shows that the mapped patterns are reasonably similar for 

RF and LDA but that the CART model failed to discriminate class 2. Figure 5 also indicates 

that the predictions and therefore the maps were very similar, but not identical, for RF models 

using all predictors or excluding the land cover predictors.  

Maps of examples of the a priori classifications are shown in Figure 6. The classifications 

describe spatial patterns that are quite different to the cluster-based classifications. Maps of 

all classifications have been provided in the supplementary file called ‘ClassificationPlots.pdf’.  
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Figure 5. Maps of the Raw3Clusters classification made using predictions derived from the 

three modelling methods; RF, LDA, CART. The top left plot represents predictions made 

using the RF model that excluded the land cover predictors. The bottom right plot represents 

predictions made using the RF model included all predictors. Note that CART failed to 

discriminate class “2”. See related comment associated with Table 7. 

 

  



 

 Page 30 

 

 

 

Figure 6. Maps of the a priori classifications. The Slope classification is the original water 

quality management classification recommended by Snelder (2015). The other 

classifications are described in Table 4. 

5 Discussion 

5.1 Discrimination of water quality variation by the classifications 

The a priori (REC-based) classifications performed poorly compared to the cluster-based 

classifications. This is an expected result because the water quality data was used to define 

the cluster-based classification whereas the a priori classifications are independent of the 

data. This result indicates that a water management classification that is defined using 

clustering can be expected to discriminate regional water quality variation better than an a 
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priori classification. None of the alternative a priori classifications performed significantly better 

than the original water quality management classification (i.e. two slope classes) 

recommended by Snelder (2015). It is therefore concluded that the a priori classifications are 

not good candidates for an alternative water quality management classification. 

The a priori (REC-based) classifications are relatively easily explained compared to the 

cluster-based classifications. Therefore, the trade-off for the increased discrimination that is 

achieved by the cluster-based classifications is the increased complexity. Clustering is not 

easily understood by non-experts. In addition, as demonstrated by this study, the exact 

solution and its ability to discriminate variation in water quality depends on subjective decisions 

associated with the analysis. For example, this study demonstrated that inclusion of correlated 

variables or weighting of certain water quality gradients affects the clustering solution. These 

points are not easily explained and may make acceptance of a cluster-based water quality 

management classification difficult. However, it is important to acknowledge that two national 

scale environmental classifications that were derived using complex multivariate statistical 

methods are widely accepted and used: Land Environments of New Zealand (LENZ; 

Leathwick et al., 2003) and Freshwater Environments of New Zealand (FWENZ; Leathwick et 

al., 2011). 

The study demonstrated that a significant increase in explanation of water quality variation 

can be achieved by moving from the simple two class slope-based classification 

recommended by Snelder (2015) to a cluster-based classification (Table 5). The study showed 

that the three-class cluster-based classification increased the explanation of water quality 

variation result compared to two classes (Table 5). In addition, the increase in discrimination 

(i.e. r2) associated with increasing from 3 to 4 classes was small compared to the increase 

associated with increasing from 2 to 3 classes. 

Use of principle component analysis did little to improve the discrimination of water quality 

compared to the cluster-based classification based on the raw data. The additional complexity 

introduced by adding PCA to the classification process would increase the difficulty of 

explaining and defending the classification. 

The weighting of the first rotated principal component achieved the desired effect of improving 

the discrimination of the water clarity (and correlated) variables. However, in so doing, it 

reduced explanation of variation of those variables more closely associated with the second 

component. In addition, the additional complexity and subjectivity associated with weighting, 

would increase the difficulty of explaining and defending the methodology. 

The Raw3Cluster classification defined using the raw (log transformed scaled site median 

water quality variables) is possibly the best candidate for an alternative water quality 

management classification. This classification is the simplest of the cluster-based 

classifications (i.e. fewest analytical steps). The classification’s discrimination of variation of 

all water quality variables was superior to the original water quality classification 

recommended by Snelder (2015) (Table 5). The choice of three classes is subjective. It could 

be justified on the basis that there is a large increase in discrimination of water quality going 

from two to three classes but that the increase from three to four is less pronounced.  

5.2 Spatial modelling of classifications 

Statistical modelling methods were used to spatially interpolate the cluster-based classification 

to all network segments in the Northland river network. The study found that RF modelling 

produced the most accurate method for the spatial interpolation. RF models are more 
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complicated and difficult to understand than the alternative LDA and CART models. However, 

the results of the RF modelling can be described by maps of the classifications and tables 

describing the environmental characteristics of classes (as can the results of LDA and CART 

modelling). It is suggested that RF modelling is a good candidate for defining an alternative 

water quality management classification.   

The statistical models were not strongly improved by including land cover predictors and no 

improvement was achieved for the RF models (Table 7). This result suggests land use 

patterns in Northland are strongly determined by “inherent” catchment characteristics such as 

climate, topography, and geology. The cluster-based classifications can be accurately 

spatially interpolated using the RF models based only on “inherent” catchment characteristics. 

This means the assignment of any stream or river segment is ‘independent’ of land use in its 

catchment and that the classification would not favour or disfavour locations because of 

current land use.  

Our statistical approach to defining the classifications was limited by the number of sites with 

water quality data and the representativeness of these sites of regional water quality patterns. 

As a result, some environments that may be regarded as distinctive regionally will not be 

represented by the classifications. These environments will be included in classes that are 

“close” with respect to the predictor variables that were included in the spatial models but this 

inclusion might not be considered appropriate. An example of this is Class 2 of the 

Raw3Clusters classification (green on Figure 7). Class 2 results from a cluster that includes 

six water quality monitoring sites that had the poorest overall water quality (Table 6). These 

sites were associated with low values of the us_slope, us_elev, us_hard and us_psize (i.e. 

lowland catchments with softer and finer grained regolith (Table 9). Much of the Aupouri and 

Pouto Peninsulas are classified as Class 2 because these areas are characterised by lowland 

catchments with softer and finer grained regolith. However, these specific areas are 

characterised by low intensity agriculture and plantation forestry and have few permanently 

flowing rivers and streams. Their inclusion in Class 2 of the Raw3Clusters classification is 

associated with the absence of monitoring sites and is probably inappropriate. This issue 

cannot be over-come statistically or objectively due to the lack of site data. We suggest 

therefore that if any of the statistically defined classifications presented here were to be used, 

some refinement of the classification may be appropriate. The refinement could be carried out 

by incorporating ‘local knowledge’ which is not reflected in the site data and spatial modelling.  

6 Conclusions 

The information presented in this report and the associated supplementary data provide a 

basis for NRC to consider alternatives for the water quality management classification. 

Aspects that should be considered include the discrimination of variation in water quality 

variation (see Table 5) and the performance of the spatial model (see Table 7). An important 

consideration is whether the increase in the discrimination of variation in water quality variation 

over the original classification is sufficiently advantageous that it outweighs the increased 

complexity and difficulty in explaining the classification. The decision to adopt an alternative 

classification is a subjective (political) one.   

This report does not recommend adoption of any alternative but does provide the information 

to assist that decision. The combination of analyses and tables presented in this report allow 

all the derived classifications, including their explanation of water quality variation, the 

performance of the spatial model and the water quality and environmental character of the 

classes to be understood in narrative terms. To demonstrate this, consider the Raw3Clusters 
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classification that is spatially interpolated using an RF model (Figure 7). This is a good 

candidate for an alternative water quality management classification given its good 

explanation of water quality variation (Table 5), good performance of the spatial model (Table 

7) and independence from land cover.  

The analyses and tables presented in this report enable the characteristic of the 3 classes of 

the Raw3Clusters to be defined. Table 6 indicates that Class 3 (red on Figure 7) had the 

highest overall water quality. Table 9 indicates that Class 3 comprises rivers and streams with 

catchments that are characterised by relatively (i.e. compared to the region) hard geology, 

steep slopes and high rainfall.   

Table 6 indicates that Class 1 (blue on Figure 7) is characterised by most water quality 

variables being between Class 2 and Class 3. Table 9 indicates that rivers and streams in 

Class 1 are similar to Class 2 but are generally higher and steeper (i.e., higher values of 

us_slope and us_elev; Table 9) and differences in geology (i.e., Class 1 has higher values of 

us_psize and us_hard; Table 9).  

Table 6 indicates that Class 2 (green on Figure 7) is characterised by high concentrations of 

E. coli, total nitrogen and ammoniacal nitrogen. Table 9 indicates that rivers and streams in 

Class 2 are characterised by relatively (i.e. compared to the region) soft geology (i.e. low 

values of us_hard; Table 9), low slopes and elevation, warm temperatures, and low rainfall. 

The catchments of rivers in this class tend to be associated with the most intensive agriculture. 

The rivers in this class are associated with poor water quality that, at least partly, reflects that 

resource use.  

It is noted that the Aupouri and Pouto Peninsulas are classified as Class 2 but that this results 

from the absence of water quality monitoring sites in these areas and may not be appropriate. 

We recommend therefore that if any of the statistically defined classifications presented here 

were to be used, some refinement of the classification may be appropriate. The refinement 

could be carried out by incorporating ‘local knowledge’ which is not reflected in the site data 

and spatial modelling. Care would need to be taken to avoid generating many small-scale 

classes based on local knowledge as this would undermine the general objective of providing 

a succinct classification for management purposes.  
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Figure 7. Map of the Raw3Clusters classification spatially interpolated using a Random 

Forest Model and fixed (i.e. non-land cover) predictors. This classification is a good 

candidate for an alternative water quality management classification. 
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