MANAGING NORTHLAND SOILS Young sandstone soils

- Atuanui clay steepland soil ANS
- Autea clay AEe, AEeH
- Autea clay loam/silty clay loam AE, AEH
- Omanaia clay loam ON, ONH
- Omanaia clay loam with coarse-structured subsoil ONe
- Omahuta clay OF, OFH
- Puhoi clay loam PB, PBH
- Puhoi light brown clay loam PBu, PBuH
- Purua clay loam PUeH
- Purua silt loam PU
- Tanoa sandy clay loam TN, TNH
- Tanoa sandy loam and sandy clay loam TNa, RNaH
- Taumata clay loam TM, TMH
- Tautoro clay loam steepland soil TLS
- Waiotira brown clay loam YCr, YCrH
- Waiotira clay YCe, YCeH
- Waiotira clay loam YC, YCH
- Waiotira gravelly sandy loam YCgH
- Whangaripo clay WRe, WReH
- Whangaripo clay loam WR, WRH
- Whirinaki clay loam WN, WNH
- White Cone sandy clay loam steepland soil WCS

Waiotira clay loam (YC, YCH) soil profile

0-15 cm dark grey brown clay

loam

15-45 cm

yellow brown gravelly clay loam

>45 cm

sandstone

*The H denotes the hill variant of this soil type, which occurs on slopes over 20° and has a shallower profile. This fact sheet uses NZ Soil Bureau map series soil type names and abbreviations.

Features of young sandstone soils

- These soils formed from banded, massive and shattered sandstone, and sandstone–mudstone basement rocks
- They are part of the Puhoi, Purua, Omanaia and Waiotira suites
- Sandstone is a harder basement rock and supports steep slopes where slip erosion is common
- These soils are prone to tunnel gullying, which in turn can trigger extensive slumping and earthflow erosion
- Because basement rocks differ, these soils vary widely in their natural fertility

3.2.1

Structure and drainage management

lssues	Management tips
Soils are all winter wet and prone to pugging	Maintaining good pasture covers helps build soil organic matter and improve soil structure Consider draining wet pasture, creating or protecting wetlands
Young sandstone soils are difficult to cultivate because of high clay content in topsoils	Oversow or direct drill for pasture renewal where clay prohibits a fine tilth
Soil structures vary due to different parent material and hill gradients, so management needs to be specific to different soil properties	Consider retiring very steep or marginal pastoral land from grazing if pastoral returns are poor and/or weed invasion is a problem

Erosion control

Erosion risks	Soil type	Specific problems	Possible solutions
Landslide erosion (slips and slumps)	All young sandstone soils on steeper slopes, especially Puhoi suite and Omanaia suite soil types	Clay washed downwards by rain creates a slip plane known as a 'greasy back' During high intensity rain storms following dry weather, water penetrates cracks in soils and lubricates the slip plane, triggering slips Deep slips >1 m can occur on Whangaripo clay and clay loam (WRe, WReH, WR, WRH) Whirinaki clay loam (WN, WNH) is prone to slip erosion and deep seated mass movement on steeper slopes	On actively eroding areas, densely plant at 5m spacings at the foot of slips, expanding to 8-10m spacings upslope Open plant poplars across hillsides at 15m spacing as a preventative measure Consider retiring very steep or marginal pastoral land from grazing if pastoral returns are poor and/or weed invasion is a problem Oversow and fertilise slip scars for faster revegetation Use contour cultivation for cropping on slopes under 15°
Gully erosion	Omanaia suite especially	More mature soils are prone to gully erosion	Plant poplar or willow poles in a zig- zag pattern along the gully
Tunnel gully erosion (severe)	Waiotira suite, especially Waiotira clay Ioam (YC, YCH) and Waiotira gravelly sandy Ioam (YCg)	Tunnels 2–3 m underground cut their way downslope, unnoticed until the surface collapses Holes (tomos) then open As well as creating a stock and vehicle hazard, these holes generate sediment and destabilise hillsides	Plant poplar or tree willow poles adjacent to, or directly into, the holes (if able) and along the tunnel path

Typical young sandstone Waiotira hill country

Nutrient management

Soil type	Nutrient status	Management strategies
All young sandstone soils	Nutrient status varies considerably in this group	Differences in basement rock make detailed knowledge of soil types and nutrient status essential for good management. Test your soils regularly
Younger soils, e.g. Waiotira clay loam	Naturally more acidic than older soils	More lime is required to achieve optimal pH which unlocks nutrients bound to clay and makes them available to plants
Waiotira suite	Low in sulphur because of massive sandstone basement rock	Little and often sulphur inputs are recommended

Drainage classes

Soil symbol	Full name	Drainage class		
PUHOI SUITE Basement rock: banded sandstone				
ANS	Atuanui clay steepland soil	4 - Well drained		
ТМ, ТМН	Taumata clay loam	4≓3 - Moderately well drained		
WR, WRH	Whangaripo clay loam	3 - Moderately drained		
PBu, PBuH	Puhoi light brown clay loam	3≓2 - Moderately to imperfectly drained		
OF, OFH	Omahuta clay 3≓2 - Moderately to imperfectly drained			
WRe, WReH	Whangaripo clay	2≓1 - Imperfectly to poorly drained		
РВ, РВН	Puhoi clay loam 1 - Poorly drained			
OMANAIA SUITE Basement rock: sandstone-mudstone complex				
AE, AEH	Autea clay loam/silty clay loam	3 - Moderately drained		
WN, WNH	Whirinaki clay loam	3⇔2 - Moderately to imperfectly drained		
ON, ONH	Omanaia clay loam	3⇔2 - Moderately to imperfectly drained		
AEe, AEeH	Autea clay	2≓1 - Imperfectly to poorly drained		
ONe	Omanaia clay loam with coarse-structured subsoil	1 - Poorly drained		
	WAIOTIRA SUITE Basement r	ock: massive sandstone		
WCS	White Cone sandy clay loam steepland soil	4 - Well drained		
YCgH	Waiotira gravelly sandy loam	3 - Moderately drained		
ҮС, ҮСН	Waiotira clay loam	3 - Moderately drained		
YCr, YCrH	Waiotira brown clay loam	3≓2 - Moderately to imperfectly drained		
YCe, YCeH	Waiotira clay	2 - Imperfectly drained		
PURUA SUITE Basement rock: shattered sandstone				
TLS	Tautoro clay loam steepland soil	4 - Well drained		
PU	Purua silt loam	3 - Moderately drained		
TN, TNH	Tanoa sandy clay loam	3 - Moderately drained		
TNa, TNaH	Tanoa sandy clay loam	3 - Moderately drained		
PUeH	Purua clay loam	3≓2 - Moderately to imperfectly drained		

Waiotira hillside showing the later stages of the tunnel gully process

Northland soil factsheet series

- Northland's climate, topography, historic vegetation and mixed geology have combined to form a complex pattern of soils across the region. There are over 320 soil types in Northland. Other regions in New Zealand average only 20 soil types per region.
- The information in this fact sheet is based on a 1:50,000 mapping scale. Therefore, it is not specific to individual farms or properties. However, it may help you to understand general features and management options for recent alluvial soils.
- Knowing your soils' capabilities and limitations is the key to sustainable production in Northland. Northland Regional Council (NRC) land management advisors are available to work with landowners to provide free soil conservation advice, plans and maps specific to your property.
- Regular soil tests are recommended. If you are concerned about your soil structure or health, the Visual Soil Assessment test could be useful. Contact the land management advisors at Northland Regional Council for more information.
- Further background information about the processes that have formed these soils can be found here: www.nrc.govt.nz/soilfactsheets

Contact a land management advisor on 0800 002 004 or visit www.nrc.govt.nz/land

