

Forest harvesting, sediment yield, and what we can do about it: an update

Chris Phillips & Mike Marden

Acknowledgements

- ErnslawOne Ltd Peter Weir, Chris Nelson, & his team at Whangapoua
- Donna Rowan & Loretta Garrett field
- Alex Watson data analysis
- FRST C04X0012 "Sustainable Management of Forest Ecosystems"

Garth Eyles & Barry Fahey – Pakuratahi Study

in this talk

- Some questions
- What we found
 - Coromandel
 - Napier
- Comparisons
- What it means
- What can we do
- Take home messages

Questions

- How much sediment is produced post-harvest?
- Where does it come from?
- What processes cause sediment generation?
- How long do bare areas take to recover?
- Where does the eroded sediment end up?
- How much gets in the stream?
- What can be done about it?
- Does it matter?
- Are places like the Coromandel unique?

Forest sediment sources - refresher

- Undisturbed areas, light disturbance
- Bare areas, deep disturbance
- Operational inputs (scalping)
- Landslides
- Roads surface, fill, batter
- Landings
- Stream bank erosion
- Stream bed erosion

Past is not the present, however!

Why the Coromandel is vulnerable

- Geology
 - deeply-weathered andesites
- Climate
 - frequent high intensity storms
 - tend to be localised
 - most have 2-yr return period
 - occasional 20-50yr return event
 - probability of a 100-yr return event
- Physiography
 - steep slopes
 - deeply dissected valleys
- Soils
 - highly variable
 - thin clay and silt loams

Methods - Whangapoua

- Disturbance surveys
- 9 m² & 1m² runoff plots
- Vegetation plots
- Silt fences
- Erosion pins
- 3 auto rain gauges
- 4 simple water level recorders
- 4 auto water samplers
- 2 continuous turbidity probes
- Landslide inventory
- Stream channel cross sections & surveys
- *No measurements of road run-off
- •*No <u>control</u> and limited <u>pre-treatment</u> period

Sediment generation

6

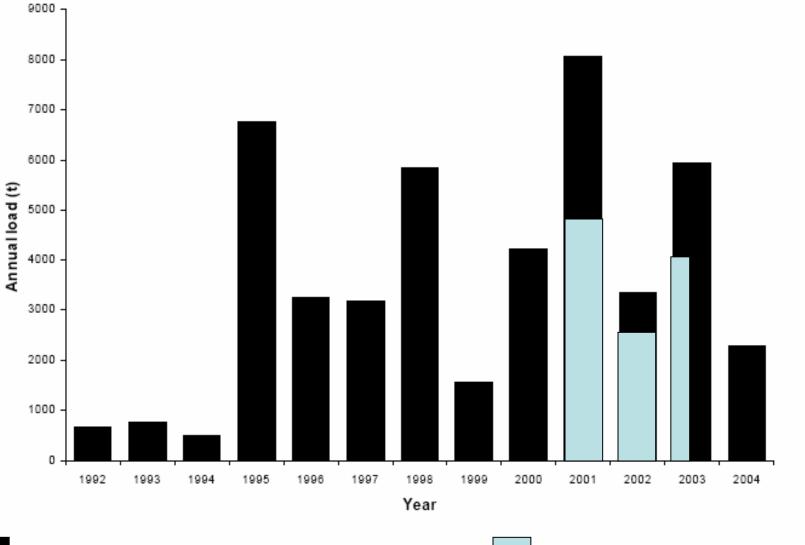
	Area (ha)	Total Sediment (t)	T/ha	
Undisturbed	14.5	0	0	
LD plots	15.5	16) 1	
DD plots	3.6	48	13	
Scalped	3.6	1200	333	
Landslide (n=36)	0.4	600	1500	

Marden, M.; Rowan, D. & Phillips, C.J. (2006)

Where does the sediment end up?

- Lot of re-distribution down-slope of source
- Most gets caught in slash and micro-topo
- How much reaches the stream depends on connectivity of generating area to stream
- Connectivity to drainage network is thus important if <u>generated sediment</u> is going to contribute to sediment yield & get off-site

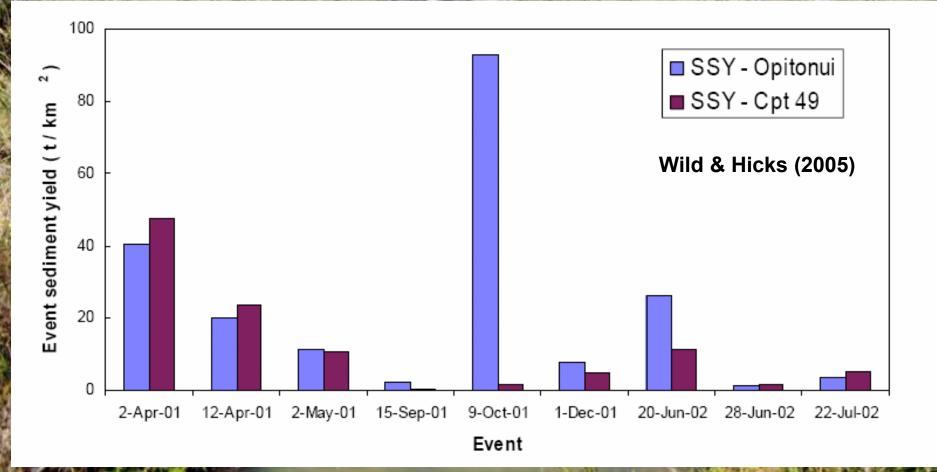
What's the biggest source for material entering the stream?

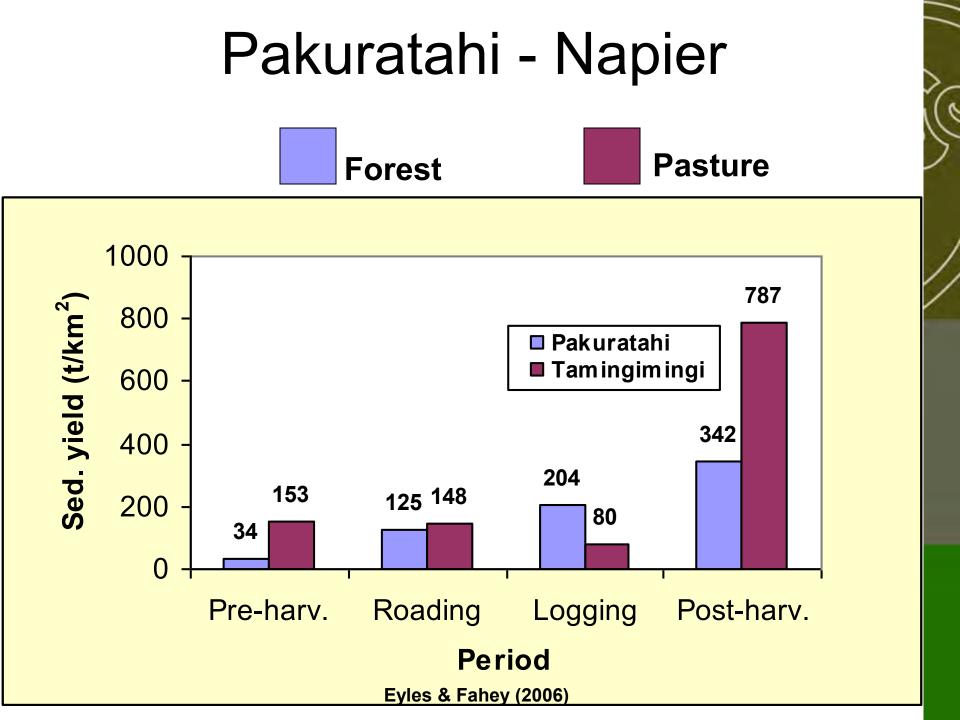

Process	Sediment generating site	Area connected to stream (ha)	Sediment generated & delivered (t)	% of total
Slope wash	Shallow dist.	n/a	n/a	n/a
	Deep dist.	0.18	2.9	2
Soil scraping	Scalped (40 mm)	0.18	60	26
Landsliding	Landslide source area	0.07 (n=9)	165	(72)
Totals	All sources	0.25	227.9	100

Annual sediment yields & storms

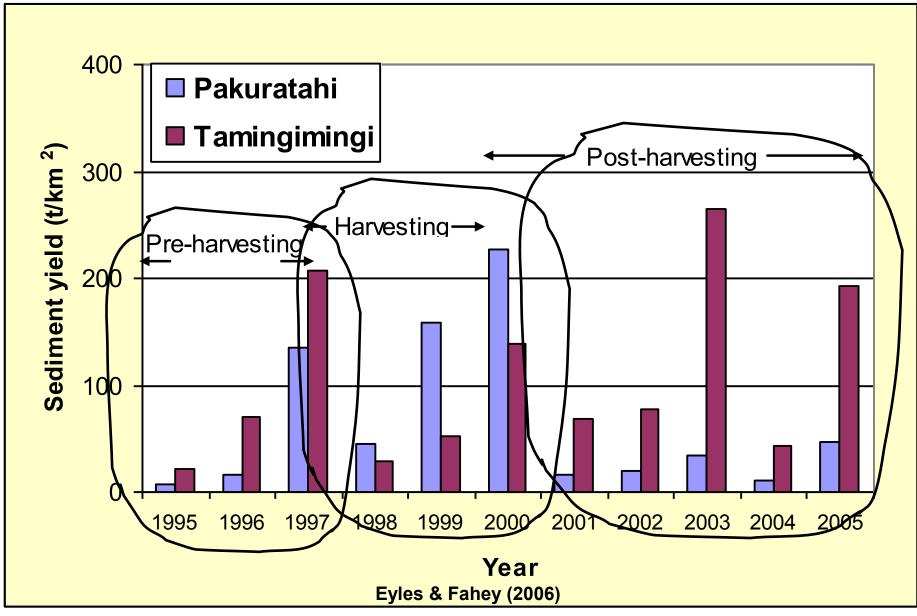
	2000 (Oct-Dec)	2001	2002	2003 (Jan-Mar)
Storms > 0.25m stage	1	11	11	6
Storms > 0.4m stage	0	4	5	3
Sediment yield (t)	1.5 (3 mths)	41	21.3	9.4 (3 mths)
Sediment yield (t km ⁻²)	4.4 (3 mths)	116 (12 mths)	59 (12 mths)	26 (3 mths)

Phillips, C.J.; Marden, M.; Rowan, D. (2005)

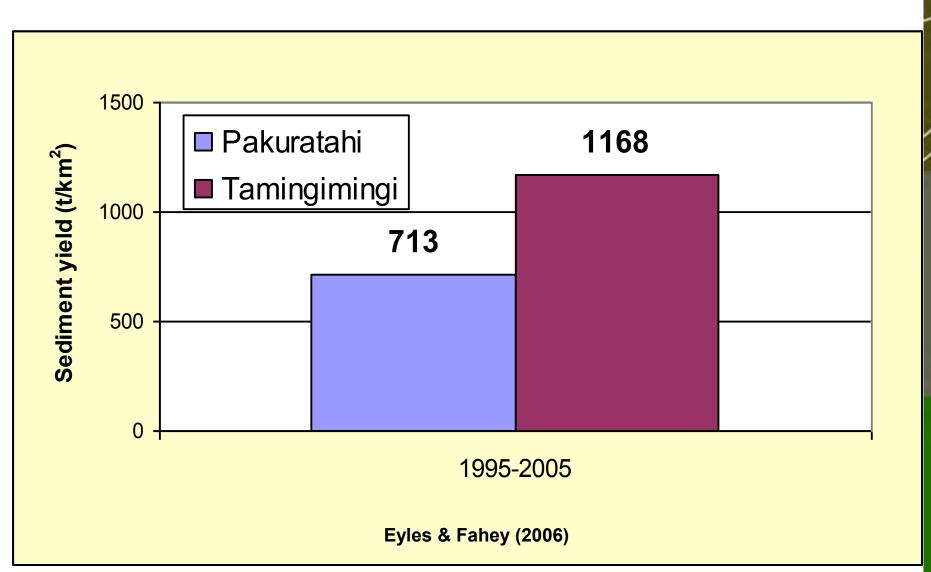

Comparison with Opitonui



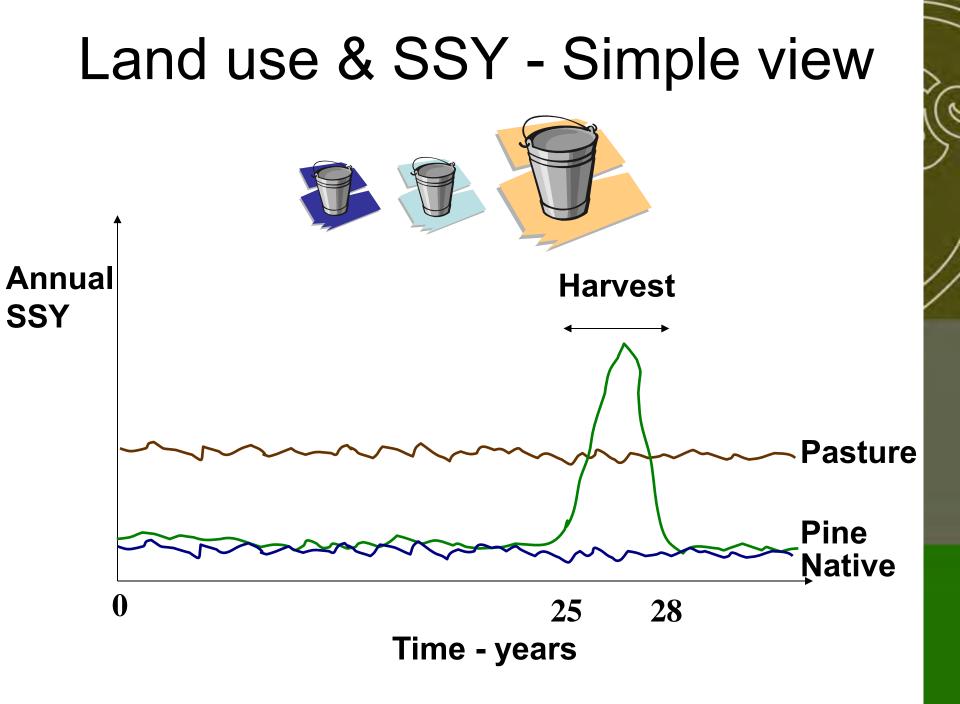
Opitonui – Wild & Hicks (2005)

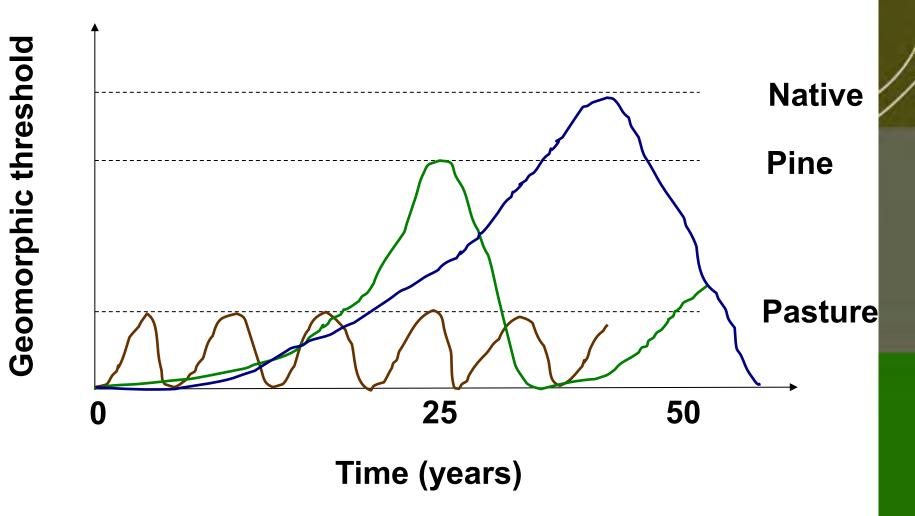

Cpt 49 – Phillips et al (2005)

Comparison with Opitonul



Sediment yield by year


Land use comparison


Post-harvest sediment yields

Where	Annual yield t/km²/y	Reference
Maimai (native) - West Coast	80 - 450	O'Loughlin et al. (1980)
Glenbervie - Northland	46	Hicks & Harmsworth (1989)
Pakuratahi - Hawke's Bay	18 - 112	Fahey et al (2003)
Motueka - various Nelson	21 - 148	Hewitt (various 2001-2002)
Coromandel - Whangapoua	59 - 116	This study Phillips et al (2005)
Coromandel - Opitonui	10 - 279	Wild & Hicks (2005)

10's to low 100's t/km²/y

Why? Differing storm thresholds

Increased storminess – real or not?

Positive proof of global warming.

So.... what can we do about it?

Stop sediment being generated
 Break the connection - intercept it before it gets to stream
 Get good numbers - more investigations & research
 Be pro-active rather than reactive - try, share & then tell

Big storms on the Coromandel

- 1971
- 1995
- Ohui 1999
- Last year 2005 April
- This year April 2006
- Next year??? you bet
- Fact of life can't control the weather
- Hard to control geomorphic "natural" erosion

Ut will flood!

Yes, it does rain here! In 1999, Gumdiggers Creek flowed over the road to Pauanui.... and this is a 3m culvert!

General conclusion

- storm characteristics are similar to previous landslide-initiating events in the Coromandel and elsewhere in NZ
- level of damage sustained within forested areas is comparable to other storm events
- cutover is more vulnerable to storm-initiated
 landslides than standing forest

Where <u>landslides</u> are key contributor to Sediment Yield not much can be done to manage this

_andslides

- Difficult to manage for both what & where during future large storm events
- Landslides happen in native & are important for long term sediment delivery to coast
- Can avoid most road & landing failures attn. to runoff

Roads

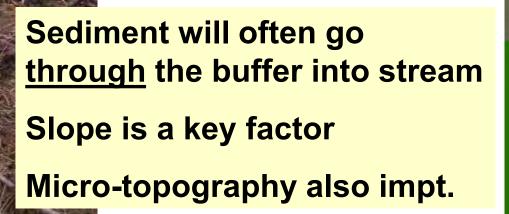
- Use E&SC techniques
- Armour the water table
- Use sediment traps
- Know where the H₂0 goes
- Get metal on road surface
- Don't drive in the wet

Riparian buffers - do they work?

2 examples

Lotsa bare areas to generate sediment Steep topography

Sediment trap full


"Huge" native buffer

Very steep topography into stream

Coarse sediment drops out

but sediment will often go <u>through</u> the buffer into stream

Bare areas to generate sediment Highly weathered materials Very easy to erode

Take home messages

- <u>Surface erosion small</u> cf landsliding & scalping
- Most sediment generated in first 12 months

- Most sediment doesn't travel far from generation site
- Annual or > storms create & shift most sediment
- <u>Landslides</u> key contributor to Sediment Yield Coromandel
- Not much can be done to reduce or manage this
- Landslides happen in native & are important for long term sediment delivery to coast

Take home messages cont....

- Annual SSY at Whangapoua & Pakuratahi similar to other parts of NZ
 - 10's -100's t/km²/y
- Connectivity of source to streams THE most critical factor for SSY -> cut the connection reduce the sediment yield
- Increased sediment yield at harvest time is a fact of life!
- The key question is: can we improve on this?
- Yes gains will come from improved source control & runoff management and will cost, BUT
- will NOT be able to stop most landslides occurring.

"One good conversation can shift the direction of change forever"

- Linda Lambert

(Author & founder of Center for Educational Leadership at California State University)