

Microplastic contamination in Te Tai Tokerau-Northland (Aotearoa-New Zealand) beach sediments

Anna de Lena, Queenie Tanjay, Meeta Patel, Jamie Bridson, Olga Pantos, Dawn Smith & Kate Parker

Report information sheet

Report title	Microplastic contamination in Te Tai Tokerau- Northland (Aotearoa- New Zealand) beach sediments
Authors	Anna de Lena, Queenie Tanjay, Meeta Patel, Jamie Bridson, Olga Pantos, Dawn Smith & Kate Parker
Client	AIM ² Project – ESR
Client contract number	N/A
MBIE contract number	CO3X1802
PAD output number	00000
Signed off by	Kate Parker
Date	15/01/2021
Confidentiality requirement	Confidential (for client use only)
Intellectual property	© New Zealand Forest Research Institute Limited. All rights reserved. Unless permitted by contract or law, no part of this work may be reproduced, stored or copied in any form or by any means without the express permission of the New Zealand Forest Research Institute Limited (trading as Scion).
Disclaimer	The information and opinions provided in the Report have been prepared for the Client and its specified purposes. Accordingly, any person other than the Client uses the information and opinions in this report entirely at its own risk. The Report has been provided in good faith and on the basis that reasonable endeavours have been made to be accurate and not misleading and to exercise reasonable care, skill and judgment in providing such information and opinions. Neither Scion, nor any of its employees, officers, contractors, agents or other persons acting on its behalf or under its control accepts any responsibility or liability in respect of any information or opinions provided in this Report.

Published by: Scion, Private Bag 3020, Rotorua 3046, New Zealand. www.scionresearch.com

Executive summary

The problem

This study aims to identify and quantify microplastics from sand sediments across the Northland region of New Zealand. This region is framed by the Pacific Ocean and the Tasman Sea and known for its famous beaches among surfers and beachgoers. This report characterises the microplastic distribution within this region.

This project

This study falls under the umbrella of *Aotearoa Impacts and Mitigation of Microplastics* (AIM²) with the purpose of investigating microplastics in the New Zealand environment and the implications for ecosystems. The national research programme is composed of three research objectives: (1) understanding the distribution of microplastics in NZ environments, (2) identifying associated risks and impacts to animals, people, and ecosystems, and (3) identifying solutions ranging microbial mitigation of existing pollution, to prevention of new pollution through outreach and education. This endeavour falls within the first research objective of the program.

Key results

This project aims to characterise and quantify microplastic distribution in sand sediments from the Northland region across 9 open coastal sites, one dune lake and one estuary site. Microplastic contamination was further investigated under varied beach location (north/south), coast side (east/west), and season (summer/winter). The mean large microplastic particle (LMPP) abundance in Northland sand sediments was 3 MP/kg DW (dry weight) (equivalent to 229 particles/m² and 4587 particles/m³). Results showed that there was a varying degree of particle abundance in different Northland sites. Microplastic abundance varies among locations within the beach and freshwater sites. Higher microplastic concentrations were seen in beach sites like Mangawhai and Sandy Bay, while lower concentrations were obtained from a lake and an estuary site like Taharoa and Onerahi, respectively. Statistical analysis confirmed significant differences in mean particle abundance based on site using one-way ANOVA. Moreover, in comparison to the microplastic concentration of the Auckland beaches (6 MP/kg DW or 459 particles/m²) investigated by Bridson et al., (2020), the overall mean particle concentration of Northland sites (3 MP/kg DW or 229 particles/m²) was found to be significantly lower compared to that of the Auckland beaches. Three (3) large particle morphologies were distinguished from the samples, with fibres forming the majority of the particles (51%), followed by fragments (36%), and then by films (13%). Characterisation identified the presence of common polymers, polyethylene (PE) polypropylene (PP), and polyethylene terephthalate (PET), in these sand sediments. A significant portion of cellulose and regenerative cellulose (C&RC) was evident as well.

Further analysis showed that the overall abundance of small microplastic particles (SMPP) observed during winter was lower with an average of 405 MP/kg DW, ranging from 0-6044 MP/kg DW compared to the particles seen during summer with an average of 1417 MP/kg DW, ranging from 0-9062 MP/kg DW. However, statistics shows that the difference between the two seasons is not significant (p=0.065) based on a 95% confidence level. Analysis of SMMPs also revealed that 82% of particles were ≤25 µm and were predominantly polyethylene and polypropylene.

Microplastic contamination in Northland (New Zealand) beach sediments

Table of contents

Executive summary	3
Introduction	5
Materials and methods	6
Sampling sites	6
Sample collection	6
Quality Control	7
Separation of microplastics	8
Identification, quantification and analysis of microplastics	9
Validation	10
Results and discussion	111
Conclusion	177
Acknowledgments	178
References	19
Appendix A	21
Appendix B	222
Appendix C	233
Appendix D	244

Introduction

Humans have been heavily reliant on plastics since their mass production at the beginning of the 1950s. Hundreds of millions of tonnes of plastics are produced every year and only a small proportion of it is recycled. Most of the plastics are disposed of to landfill, however some end up in the ocean. It has been reported that in 2016, up to 23 million metric tons of plastics are floating in the world's oceans [1,2].

According to the U.S. National Oceanic and Atmospheric Administration (NOAA) and the European Chemicals Agency (ECHA), microplastics are miniscule plastics measuring less than 5 mm in length. They are found in various forms such as nurdles, fibres, fragments, and films. These microparticles are globally recognised as contaminants in marine and terrestrial environments. Microplastic can be classified as either primary, where the particles are industrially designed for commercial use (e.g. plastic nurdles used for plastic manufacturing and glitter), or secondary, where the small pieces of particles were formed through various weathering processes resulting in the fragmentation of larger plastic items or pieces. Microplastics have been identified as derived from plastics of different origins and compositions such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyester (PET), polyamide (PA), cellulose acetate (CA), and poly(vinyl chloride) (PVC) [3,4]. Microplastics are insoluble in water, nondegradable, and possess various physicochemical properties (size, shape, buoyancy, chemical composition) that determine their bioavailability and ecotoxicity to organisms [5-7]. The following sources have been identified as dominant in releasing microplastics into the environment: abrasion of car tyres, synthetic textiles, litter, marine coatings, road markings, personal care products and plastic pellets [1-6].

Plastic marine debris continuously degrades in the environment, subsequently creating smaller fragments due to weathering factors such as UV radiation (sun), physical and biological degradation. An increasing number of studies have reported the ingestion of these microplastics by a variety of marine organisms across all trophic levels such as birds, marine mammals, fish, and invertebrates [3, 7]. When ingested, the microplastics can remain in the digestive tract and form clumps that can hinder the passage of food and block the digestive system. It can also give a false sense of satiation thus leading to starvation. The release of additives (e.g. plasticisers) and ambient pollutants from the plastics can cause harmful effects by affecting the hormonal and reproductive system, damaging the gastrointestinal tract, causing delayed growth, genotoxicity and in some cases death [8-11]. Microplastics can also act as a carrier for dispersal of chemicals and biota such as invasive species and pathogens thereby potentially endangering marine biodiversity [12]. While there have been many studies reported on the effects of microplastics on marine life the impacts and mechanisms involved are still not fully understood [19-23]. Even less is known about the potential human health effects, with this area of research even more in its infancy, although preliminary findings suggest that life wildlife, there are deleterious effects [24].

Microplastics either sink or float in the marine environment depending on their density. Positively buoyant polymers, such as polypropylene and polyethylene, generally float in seawater as their densities are less than that of seawater. However, factors such as biofouling can cause a usually buoyant polymer to become heavy and accumulate in the sediment or sink to the bottom of the ocean [12]. This manifestation is evident in a recent study reporting microplastic presence in sediments from beaches [9, 13] and freshwater sources [27] of New Zealand. Other studies that investigated the microplastic distribution in New Zealand include the discovery of plastics in a third of turtles and birds found washed up on the shore dead [14], and the sighting of a plastic patch larger than Greenland, which was believed to have originated from New Zealand by a group of researchers looking at the microplastic abundance in the South Pacific [15].

The primary sources of microplastics have been linked to marine and domestic land-based activities (e.g. laundry discharges) [32], and industries including production and waste management. It is widely known that the ocean is considered as a sink for microplastics. However, the marine environment is not always the final fate of microplastics since some studies proved that microplastics can become resuspended into the atmosphere from the sea surface. Therefore, resulting in the continuous cycling between terrestrial and aquatic systems [39,40].

This study aims to contribute to the understanding of the microplastic distribution in Aotearoa New Zealand's beach ecosystems. Specifically, this intends to create baseline data for the Te Tai Tokerau - Northland region coastline and freshwater sites.

Materials and methods

Sampling sites

Sand sediment samples were supplied to Scion by Northland Regional Council (NRC) via courier. Upon arrival at Scion the samples were immediately stored at -20 °C until required for analysis. Details of the sampling coordinates are provided in Appendix A. The 11 locations sampled for microplastics encompassed the east and west coast of the Te Tai Tokerau - Northland region (Fig.1). Information provided by NRC for each location is provided in Appendix B.

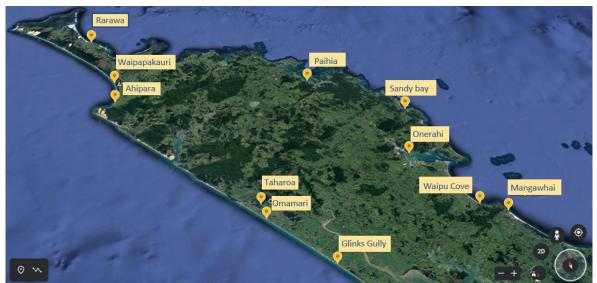


Figure 1. Map of the Northland locations sampled for microplastic analysis.

Sample collection

The samples were collected during the summer period: November 2019- February 2020 and winter period: August-September 2020. All locations were sampled on an out-going tide to ensure that there was plenty of beach area to sample from. Depending on the size of the beach at least three to four transects (spacing between each transect 50 m) were sampled. A 10 m transect was laid along the last high tide mark (Figure 2a). One metre either side of the transect was marked out and the 2 x 10 m area was divided into a grid consisting of eighty (80) half-metre quadrants (0.5 x 0.5 m) (Figure 2b). The number randomisation function in Excel was used to choose five quadrats from each transect for sampling (see Figures 2a and 2b). These quadrants represented replicates for each transect.

Figure 2a. Example of a transect along the beach

	+																				
1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1 m		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
0.5 m		41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80

10 m

Figure 2b. Transect (centre thick line) and the 80x0.5m² quadrants.

Within each of the 5 quadrants, 5 sand cores were taken (from each corner and the centre of the quadrant) with steel corers (5 x 5 cm) to a depth of 5 cm. The 5 cores of sand were combined in a pre-rinsed aluminium tray and sealed with the foil-lined paper lid and wrapped in aluminium foil.

Quality Control

To minimise the risk of any possible contamination during field sampling, the staff wore natural fibres and minimised the use of plastics where possible. Moreover, the staff positioned downwind during sample collection to avoid cross contamination of fibres from clothes shedding. During separation process in the laboratory, all glassware and equipment were rinsed first with tap water then twice with ultra-pure water (distilled water which had passed through a 0.45 μ m filter). All washed vessels were covered with aluminium foil when not in use. A cotton laboratory coat was worn during the handling of the sediment and analysis of samples. The use of plastic apparatus was minimised as much as possible. All samples were processed in a controlled room with minimal foot traffic.

Procedural blanks were used throughout the isolation process to assess any potential crosscontamination. An analysis using a procedural blank showed an average of 5 MPs per sample. Analysis showed the presence of microplastics identified as polytetrafluoroethylene (PTFE) and blue polypropylene (PP) fragments. During the investigation, it was found out that the sodium iodide salt from LOBA-ACS reagent, which was used at the end of the peroxidation step was, in fact, contaminated with microplastics identified as PTFE and blue PP. The LOBA chemical was used only in the summer samples and its use was discontinued thereafter. Due to a substantial amount of procedural blank contamination, the PTFE films and distinct blue PP fragments were excluded from the quantitative analysis of beach sediments. The results expressed in Figure 3 were calculated with the omission of PTFE contaminants and the distinct blue PP in affected samples.

Environmental blanks were collected to monitor for the presence of airborne plastic contamination inside the laboratory. Three (3) blank filter membranes in glass petri dishes were placed on the lab work bench and inside the fume hood. Inspection showed no microplastic in the blanks which indicates a low risk of environment contamination.

Separation of microplastics

The large microplastic particles (LMPP 300 μ m - 5 mm) were separated from the sediment following the NOAA protocol [16], using sodium iodide solution as the flotation media. The separation process involved a series of steps which are detailed below.

Extraction

Wet sediments in the trays was dried in an oven set at 70 °C. The dried sediment (400 g) was weighed into an 800 mL beaker and 300 mL of sodium iodide solution (5.3 mol/L (797 g Nal per 1 L water); $\rho = 1.6$ g/mL) was added to it. The mixture was stirred for 10 minutes using a glass rod and allowed to stand for 1 hour after which the floating matter was decanted onto a cascade of 300 µm and 32 µm sieves. The collected matter on the 300 µm sieve was washed into a pre-weighed 600 mL beaker and dried at 70 °C overnight. Any large non-plastic material was thoroughly washed with ultra-pure water before discarding to ensure no microplastic was accidentally lost. The material collected on the 32 µm sieve was washed into a pre-weighed jar and dried at 70 °C overnight. Both fractions were later processed separately and in a slightly different manner. From here on the microplastic collected on the 300 µm sieve are referred to as large microplastic particles (LMPP) and the microplastic collected on the 32 µm sieve are referred to as small microplastic particles (SMPP).

Wet Peroxidation

LMPP

The wet peroxidation step was included to digest any remaining organic matter. Iron sulphate (20 mL, 0.05 mol/L, Sigma-Aldrich) and 20 mL of hydrogen peroxide (30%, Merck) solutions were added to the 600 mL beaker containing the dried matter. The mixture was left to stand for 5 minutes during which it bubbled and frothed. The beaker was placed in a water bath at 75 °C and shaken for 30 mins and an additional aliquot of 20 mL hydrogen peroxide added if any organic matter was still visible. This step was repeated until no organic matter was evident. Sodium iodide (Merck, LABO and ECP, ACS reagent) was added to the mixture (15 g Nal per 20 mL of the solution) to increase the density of the solution. The mixtures were heated and shaken in a 75 °C water bath until most of the salt dissolved. The samples were then cooled to room temperature in preparation for the density separation.

SMPP

Ten (10) mL each of iron sulphate solution (0.05 mol/L, Sigma-Aldrich) and hydrogen peroxide solution (30%, Merck) were added to the 600 mL beaker containing the dried matter. The mixture was left to stand for 5 minutes during which time it bubbled and frothed. The beaker was placed in a water bath at 75°C and shaken for 30 mins, and an additional aliquot of 10 mL hydrogen peroxide was added if any organic matter was still visible. The addition of hydrogen peroxide aliquot was repeated until no organic matter was evident. Sodium iodide (ECP, ACS reagent) was added to the mixture (15 g Nal per 20 mL of solution) to increase the density of the solution. The mixture was heated and shaken in the water bath until all the salt had dissolved. The samples were then cooled to room temperature in preparation for density separation.

Density separation

<u>LMPP</u>

The room temperature peroxidation was allowed to cool before being transferred to a density separator. To ensure that all microplastics were transferred to the density separator the beaker was

thoroughly rinsed with Nal solution (5 mol/L). The funnels were covered with foil and left to settle overnight at room temperature. The settled matter was discarded, and the remaining solution was filtered through a PCTE filter membrane (Whatman Track-Etched Polycarbonate Membrane, 4.7 cm, 10 μ m). The inner wall of the beaker was thoroughly rinsed with Milli-Q-water to ensure complete transfer of microplastics and the surface of the filter membrane was washed thoroughly to ensure complete dissolution of the Nal crystals. The filter membrane were transferred to a labelled glass petri dish and stored in a cool dark place until required for the quantification and analysis step.

SMPP

The same procedure used for LMPP for the transfer of the peroxidised solution and the density separator to rinsing using NaI solution (5 mol/L) was followed for the SMPP mixture. After overnight sedimentation, the settled matter was discarded, and the remaining solution was collected in a pre-washed and pre-weighed capped glass vial (25 mL). Using a dropping pipette, a few drops of the well mixed solution were transferred onto an aluminium oxide filter membrane (Whatman Anodisc, 25 mm, 0.2 μ m). The inner wall of the beaker was thoroughly rinsed with ultra-pure water to ensure complete transfer of microplastics and the surface of the filter was washed thoroughly to ensure complete dissolution of the NaI crystals. The weight of the solution transferred onto the membrane was recorded. The filter membrane was transferred to a labelled petri dish and stored in a cool dark place until required for the quantification and analysis steps.

Identification, quantification and analysis of microplastics

LMPP

The collected matter on the filter membranes was examined under a Zeiss Stemi Dv4 stereo microscope with 8-32x magnification to identify potential LMPPs. Plastic particle selection was performed according to previously published guidelines [41], specifically: size <5 mm, absence of cellular or organic structures, fibres of equal thickness throughout entire length, particles of clear and homogenous colour throughout. Fourier Transform Infrared (FTIR) Spectroscopy (Bruker Tensor 27) with attenuated total reflectance (Bruker, single bounce diamond cell) was used for the identification and quantification of the LMPP. All particles were selected for analysis by FTIR spectroscopy. Spectra were processed using the Bruker OPUS software, using the rubberband baseline correction algorithm. The spectra were searched against BioRad KnowltAll library databases for polymers, coatings and fibres using the Euclidean distance algorithm. Using an approach adapted from Kroon et al. (2018), database hits of >70% were positively identified as microplastics, while database hits of <70% were reviewed by an experienced spectroscopist to confirm the identity of the particle. [42]

<u>SMPP</u>

Analysis of SMPPs was performed using a Bruker Hyperion 3000 FTIR-microscope equipped with a 64 x 64 focal plane array (FPA) detector. SMPPs were quantified using the automated approach of Primpke *et al.*, (2017). The anodisc membrane was placed between two 25 x 2 mm CaF₂ windows and mounted on the microscope stage. A visual image of the samples was collected using the 4x vis objective, followed by FTIR imaging using the 15x cassegrain objective in transmission. Data collection was performed using OPUS version 8.2.28 (Bruker Optics GmbH) software with 4 x 4 binning at a resolution of 8 cm⁻¹ with 6 co-added scans. Spectra were manipulated using the OPUS cut, and baseline correction functions prior to data processing.

Data processing was performed using an offline computer running OPUS 7.2. Spectra were compared against a database of common plastic spectra using OPUS search function as previously described (Primpke *et al.*, 2018). Image analysis was performed using Python and Simple ITK image processing modules as previously described. [15, 17, 18].

Validation

LMPP

The validity of the method was evaluated using polymer-spiked sediment samples. Coloured polymers were used in the experiment for easy visual sorting during identification. The characteristics and properties of the three (3) polymers used in the spiking experiment are shown in Table 1. In the visual differentiation of microplastics and confirmation of particle count, a low magnification microscope was used. Positive controls were prepared by spiking clean sediments with thirty (30) particles of each polymer type. The negative controls (blank), on the other hand, were devoid of polymers. All experiments were prepared by two analysts and performed in triplicate. Samples were processed following the LMPP quantification described in the methods above; after which the percent recovery of the polymers was determined.

Analysis	Polymer type	Size range (µm)	Colour	Morphology	Density (g/cm ³)
	Polystyrene	500-1000	Purple	Fragment	1.05
LMPP	Polyamide	500-1000	Green	Fragment	1.15
	Polypropylene	500-1000	Pink	Fragment	0.92
	Polyethylene	38-45	Orange	Sphere	0.96
SMPP	Polyamide	30-100	Green	Fragment	1.15
	Polystyrene	100-300	Purple	Fragment	1.05

Table 1. Properties of microplastics used in the LMPP validation.

<u>SMPP</u>

The validation of instrumental parameters was conducted to determine the rate of detection by the analysis method described above for SMPP. Ten (10) particles of each polymer (refer to Table 1) were applied to a small area of an anodisc filter using a low magnification microscope. This procedure was repeated to make triplicates. The negative controls (blank), on the other hand, were prepared similarly but with no added polymer.

Results and discussion

Validation results

LMPP

During validation, a chemical change was observed on the polymers, polyamide and polypropylene, after the peroxidation step. FTIR analysis confirmed that the discoloration is a result of oxidation attributed to the presence of an -OH stretch signal evident at the 3400 cm⁻¹ band. The number of microplastic particles was recorded through visual inspection, taking note of the altered colours and the identified chemical nature using FTIR-ATR. A high overall recovery (95%) of the spiked polymers was achieved (Table 2).

Polymer type	Analyst		overed am	Average (n=3)	
- , - , - , - , - , - , - , - , - , - ,	,	1	2	3	recovery (%)
Polystyrene	1	28	27	29	95
Folystylene	2	28	28	30	95
Polyamide	1	27	29	27	92
Folyamide	2	27	28	28	92
Polypropylopo	1	30	27	29	98
Polypropylene	2	30	30	30	90
Overall	95%				

Table 2. Results of Validation Experiment for LMPP.

<u>SMPP</u>

Validation shows a high rate of success, at 96%, in the detection of artificially spiked microplastic fragments through FTIR-FPA (Table 3). This translates to high reliability of particle counting and identification of the instrument.

Table 3. Results of instrumental parameter validation for SMPP.

Polymer type	replicate no.	No. of fragments spiked	No. of spiked successfully identified	Average (n=3) recovery (%)
	1	10		
Polyethylene	2	10	30	100
	3	10		
	1	10		
Polyamide	2	6	26	87
	3	10		
	1	10		
Polystyrene	2	10	30	100
	3	10		
Success rate				96%

LARGE MICROPLASTIC PARTICLE ANALYSIS

Microplastic abundance

The abundance of microparticles at different sites of the Northland region is expressed in three (3) different units (MP /kg DW, MP/m2, and MP/m3) to be consistent with the literature (see Appendix C). Table 4 summarizes the abundance in terms of MP/kg DW. Concentrations were computed from the average of 3, 5 or 6 replicates of summer samples and 3 replicates of all winter samples. Percent (%) abundance for each type of polymer at each location is also represented graphically in Figure 3.

Site Name	Zone	Abundance	(MP/kg DW)
Olice Maine	Zone	Summer	Winter
Ahipara North	West	1 ± 1	6 ± 6
Ahipara South	West	nd	4 ± 5
Waipapakauri North	West	3 ± 3	3 ± 4
Waipapakauri South	West	5 ± 4	2 ± 0
Glinks Gully North	West	2 ± 1	2 ± 4
Glinks Gully South	West	5 ± 6	nd
Omamari North	West	3 ± 1	3 ± 4
Omamari South	West	7 ± 11	2 ± 0
Paihia North	East	1 ± 2ª	6 ± 1
Paihia South	East		3 ± 1
Rarawa North	East	2 ± 2	2 ± 2
Rarawa South	East	2 ± 3	2 ± 2
Sandy North	East	8 ± 10	9 ± 6
Sandy South	East	7 ± 4	2 ± 1
Waipu North	East	1 ± 1	12 ± 7
Waipu South	East	nd	3 ± 1
Mangawhai North	East	7 ± 4	7 ± 4
Mangawhai South	East	3 ± 1	10 ± 2
Onerahi (North)	Estuary site	nd	1 ± 1
Onerahi (South)	Estuary site	nd	1 ± 1
Taharoa North	Dune lake	1 ± 1	nd
Taharoa South	Dune lake	1 ± 1	1 ± 1

Table 4. LMPP abundance expressed as MP / kg DW for Northland summer samples.

^aAverage value for North and South

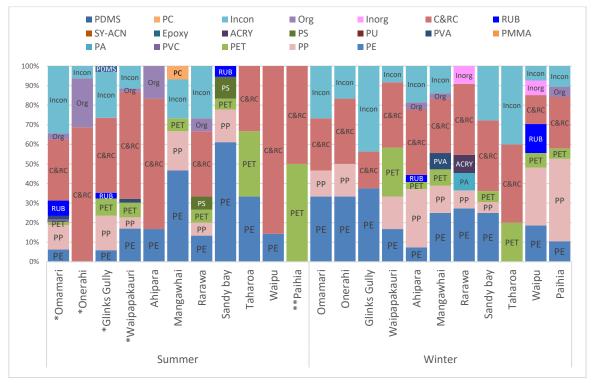
n.d- none detected

Results showed that there was a varying degree of LMPP particle abundance in different Northland sites (Table 4). Microplastic abundances vary between locations within the beach, estuary and freshwater sites. High microplastic concentrations were seen in beach sites like Mangawhai and Sandy Bay, while lower concentrations were obtained from a lake and an estuary site like Taharoa and Onerahi, respectively. Statistical analysis confirmed significant differences in mean particle abundance based on site using one-way ANOVA (see Appendix D-1).

On the basis of season, particle abundance during summer and winter ranged from 0-8 MP/kg DW and 0-12 MP/kg DW, respectively. These quantified to a mean abundance of LMPP of 3 MP/kg DW (188 MP/m²) during summer and 4 MP/kg DW (270 MP/m²) for winter (see Appendix C). No significant difference in particle abundance was seen, however, between summer and winter samples (Appendix D-2A) and on the east and west side of the coast (Appendix D-2B) at a 95% confidence level.

In comparison to the microplastic concentration of Auckland beaches (6 MP/kg DW or 459 particles/m²) investigated by Bridson et al., (2020), the overall mean particle concentration of Northland sites (3 MP/kg DW or 229 MP/m²) was found to be significantly lower compared to that of Auckland beaches (Appendix D-2D). It should be noted, that the flotation media used for the Auckland study was of lower density ($\rho = 1.2$ g/L) compared to that used in this study ($\rho = 1.6$ g/L), as such abundance values from the Northland study should if anything be bias towards higher values than reported by Bridson et al., 2020. The lower abundances observed in the Northland region correlate with the lower population density of the region compared to Auckland. In addition, the relative abundance of microplastics between the east and west coasts was different for the Auckland (west coast > east coast) and Northland (east coast > west coast) regions. (see Appendix D - 2E & 2F). This observation suggests that much of the microplastic debris on the Auckland west coast has originated from local sources, rather than from the more populous regions of East Australia and south east Asia carried by the East Australian current, as hypothesised by Bridson et al., 2020 [7].

Polymer composition


In the characterisation of the particles, polyethylene (PE) was seen in the majority of the analysed sediment samples in both seasons. Polypropylene particles (PP) followed next as the most dominant polymer type while PET and PS were identified in relatively lower quantities. This order of relative mass compositions (PE>PP>PS) conforms to the characteristics of the plastics generated globally and those that are captured from the water and benthic environments seen previously in similar studies [35]. Negligible levels of PVC were observed, although this study used a high-density floatation solution suitable for the recovery of PVC. While PVC is produced and used widely (4th highest production polymer) [37], its negative buoyance likely limits transport and distribution in aquatic environments, settling and depositing into sediment rapidly, rather than being transported to beach environments.

Although the exact sources of the contamination remain unknown, identified polymers are commonly associated with outdoor, recreational, personal and industrial use. PP and PS, for example, are commonly used in outdoor gear and disposable food containers and utensils. PE is used in a variety of household and industrial applications, while PET is used in common fabrics.

Figure 3. Relative abundance (%) of polymer type of *LMPPs identified at the sampling sites in summer and winter. An average of 3 samples were conducted for each site, unless indicated where 5* or 6** were done. Polymer type:* Polymers: RUB = Rubber; PVA = Polyvinyl acetate; PP = Polypropylene; PE = Polyethylene; PET = Polyethylene terephthalate; PVC = Polyvinyl chloride; PA = Polyamide; PC = Polycarbonate; PS = Polystyrene; PDMS = Polydimethylsiloxane; ACRY = Acrylic

Accounting for other particle presence, significant portions of cellulose and regenerative cellulose (C & RC) in the form of fibre, were evident during analysis (see Figure 4). Cellulose fibres are unlikely to be harmful to the environment, but the associated dyes may pose a risk [33]. Based on the result of this study, the fibres identified as cellulose and regenerated cellulose were 93% colourless and the remaining 7% contained black, red, blue and green pigments. Hence, in this study, particles composed of C&RC were not considered as microplastics and were omitted from the overall calculation.

Figure 4. *LMPP (%)* for various polymer types including non-microplastic particles (C&RC, Organic, Inorganic and Inconclusive) at the various sampling locations.

Morphological features

In terms of morphology, three (3) microplastic morphologies were distinguished: film, fibre, and fragment. Fibre was the most prevalent morph and a large proportion was attributed to the presence of C & RC particles in both summer and winter. Fragments were identified as PE was predominantly present in summer, while both PP and PE were prevalent in winter. Moreover, PE was also the predominant polymer in the form of film observed in summer and winter. These findings were consistent with previous reports [7].

	_	Percen	tage
Variable	Category	Summer	Winter
Morphology	Film	5	23
	Fibre	61	39
	Fragment	34	38
Polymer type	PE	16	20
	PP	10	18
	PET	6	6
	PS	1	-
	Other ¹	5	5
	C&RC	39	29

Table 5. Characteristics of large microplastics across the variables of shape and polymer type for all sites.¹ including rubber

SMALL MICROPLASTIC PARTICLE ANALYSIS

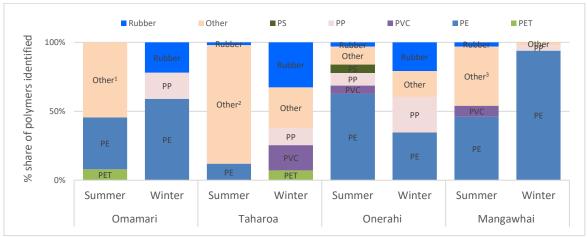
A subset of the locations was analysed for SMPP, based on the highest and lowest number of total particles in the eastern and western beach sites in the region: Omamari, Taharoa, Onehari, and Mangawhai sites.

The mean abundance of SMPP across the four sites (911 MP/kg DW) was significantly higher (p=0) than for LMPP (3 MP/kg DW). This highlights the limitations of commonly used visual identification and quantification methods and the importance of identifying smaller (<300 µm) particles for understanding the extent of microplastic pollution in the environment.

Across these four sites, the mean abundance of SMPP was lower in winter (average of 405 MP/kg DW, ranging from 0-6044 MP/kg DW) compared to summer (average of 1417 MP/kg DW, ranging from 0-9062 MP/kg DW). However, statistical analysis demonstrated that the difference between the two seasons is not significant (p=0.065) based on a 95% confidence level, as similarly observed for LMPP.

Site	Season	Polymer excl rubber ¹	Total rubber ²	Total all polymers
Omamari	Summer	339 ± 483	nd	339 ± 483
	Winter	65 ± 117	19 ± 46	84 ± 114
Taharoa	Summer	871 ± 1576	27 ± 66	898 ± 1569
	Winter	279 ± 430	110 ± 147	389 ± 524
Onerahi	Summer	1162 ± 1293	45 ± 75	1207 ± 1366
	Winter	231 ± 305	60 ± 105	291 ± 311
Mangawhai	Summer	3297 ± 3695	126 ± 308	3423 ± 3936
	Winter	1043 ± 2450	nd	1043 ± 2450

 Table 6. SMPP abundance result for selected Northland summer and winter samples expressed as MP/kg


 DW.

¹ All identified plastics (excluding rubber)

² Mostly ethylene-propylene-diene rubber

nd - none detected

Polyethylene was predominant at all sites at both seasons except for Lake Taharoa during winter. The types of polymers found from the analysis of SMPP are consistent with that of the LMPP. Smaller particles were likely derived from the physical and chemical degradation of large microplastic particles in the environment. However, it should be noted that fragmentation of LMPP can occur during sample processing. Meanwhile, some polymer types were exclusively seen in significant proportions based on the result of SMPP analysis. For example, Lake Taharoa (summer), a popular coastal highway for vehicle users was found to have a relatively high fraction of polychloroprene (neoprene), while Mangawhai (summer) and Omamari (summer) were both seen with high proportions of polyamide, none of which were detected in the LMPP analysis.

Figure 5. Proportion (%) of polymer types identified at selected sampling sites from SMPP analysis. Polymer type: PP = Polypropylene; PE = Polyethylene; PET = Polyethylene terephthalate; PVC = Polyvinyl chloride; PA = Other1 mostly polyamide, Other2- mostly polychloroprene, Other3- polyamide and Acrylic.

Furthermore, SMPP analysis revealed that particle size of $\leq 25 \ \mu m$ accounted for 82% of the small microplastics. Figure 6 below shows that all particles from Omamari Winter and Taharoa Summer fell within the size range with 225-300 μm particles only evident in the Taharoa winter samples.

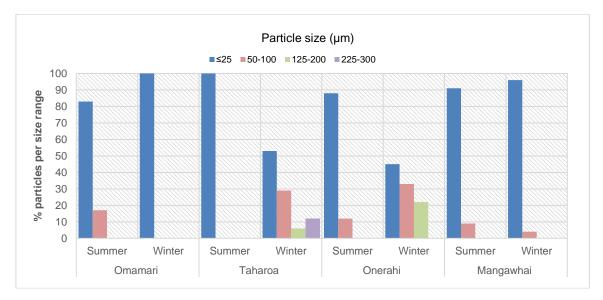


Figure 6. Size distribution of SMPPs identified in sand samples from four sites in summer and winter.

MICROPLASTICS TRANSPORT MECHANISM

Data suggests that contamination of large microplastics (LMPP) in all Northland sites were evident except for the samples from Onerahi, an estuary site known as downstream of the stormwater and wastewater treatment plant (WWTP) in Whangarei. This was surprising given the abundance of microplastic debris observed at this site during sampling. However, sand samples from this site were high in organic debris which made it difficult to digest via peroxidation. It was acknowledged that the abundance of microplastics in Onerahi was likely underestimated due to the obstructing organic matter during scanning. This inference is supported by the small particle analysis confirming the presence of microplastics with an overall mean abundance of 1293 MP/kg DW during summer and 231 MP/kg DW during winter. Comparing the SMPP result of Onerahi to the rest of the selected sites during summer, its abundance was relatively high with a variety of polymers identified. Potential sources of the contamination were possibly from runoff and/or from the WWTP effluent.

Also noteworthy is the higher number of microplastics in the samples from Ahipara beach from summer (1 MP/kg DW) to winter (6 MP/kg DW) which can be explained by the heavy rain event before the sampling during winter. It is likely that microplastics were deposited from the nearby creek during the heavy rain.

Lake Taharoa has a relatively low number of large microplastics in both summer and winter. The microplastics found on the lake's shore are composed of 90% fibres attributed to cellulose/regenerated cellulose, polyester, and polyethylene. The remaining 10% were disregarded due to uncertain characteristics. Lake Taharoa has no known natural inlets or outlets and it is believed that 70% of its water is sourced from rainfall [34]. The sources of microplastics in the freshwater lake remain unknown but it is likely that the recreational activities on the lake contributed to the deposition rate.

Moreover, overall data revealed the presence of large particle fibres in 91% of the samples (in both seasons), with an overwhelming fraction (69%) found during summer. Fibres are of concern due to their ability to cycle between the marine environment and atmosphere. Significant portions of cellulose and regenerated cellulose and polyester were commonly seen. The composition is consistent with the quantities used in textiles and common fabrics for clothing. Clothes are known to shed significant amounts of microfibers during normal wear and are directly released into the atmosphere [32], hence this explains that potential emissions from tourists and beachgoers especially during summer possibly contributed to the contamination.

Conclusion

This study revealed that large and small microplastic particles were ubiquitous in the coastal and freshwater sites of the Te Tai Tokerau-Northland region of New Zealand. Microplastics were found to have consistent polymer characteristics, and were predominantly PP, PE, and PS, which are commonly associated with outdoor, recreational, personal and industrial use. Fibres were the predominant particle morphology observed in sample taken during the summer, however the proportion of fibres was similar to fragments in winter samples. In addition, SMPP were significantly (p=0) higher than LMPP, which are likely generated from the physical and chemical fragmentation of larger microplastics in the coastal environment.

Microplastic abundance did not significantly differ between seasons. Seasonal variations also had no significant effect on the type of polymers identified. Meanwhile, microplastic levels were seen to significantly vary across all sites. The east coast also generally had a higher LMPP count compared to the west. Potential contributors of the plastic contamination include marine and domestic land-based activities, water runoffs, airborne transport and atmospheric fallouts.

Acknowledgements

We would like to extend our thanks to the following people and groups for their support and assistance in the collection of sand samples for this study.

Northland Regional Council

Nick Bamford Richard Griffiths Melodie Pene Neihana Umuroa Hayley Sharp Manas Chakraborty Ricky Eyre

NorthTec

Manue Martinez Daniel Roecken Sam McAulay

lwi and hapu

Te Parawhau – Fred Tito Te Rōpū Whakahau – Sandra Te Raroa – Snow, Taoho and Ric Te Uri o Hau – Fiona Kemp Ngāpuhi – Tania Pene Patuharakeke – Juliane Chetham Te Rarawa – Tui Quaqua Te Paa, Waimarie Halkyard, Rongo Bentson Ngai Takoto – Kaio Hooper Te Aupouri – Niki Conrad

Other

Lydia Draper - Member of Te Rūnanga Papa Atawhai O Te Tai Tokerau/Northland Conservation Board and Marine Megafauna Foundation Oliver Bone - Experiencing Marine Reserves

References

- 1. *Plastics Atlas. Facts and figures about the world of synthetic polymers 2019*, ed. L. Fuhr and M. Franklin. 2019, Lahr, Germany: Druckhaus Kaufmann.
- 2. Boucher, J. and D. Friot, *Primary Microplastics in the Oceans: A Global Evaluation of Sources.* 2018, Gland: Gland, Switzerland: IUCN.
- 3. Auta, H.S., C.U. Emenike, and S.H. Fauziah, *Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions.* Environment International, 2017. **102**: p. 165-176.
- 4. Stolte, A., et al., *Microplastic concentrations in beach sediments along the German Baltic coast.* Marine Pollution Bulletin, 2015. **99**(1-2): p. 216-29.
- 5. Zalasiewicz, J., et al., *The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene*. Anthropocene, 2016. **13**: p. 4-17.
- 6. Browne, M.A., et al., *Accumulation of microplastic on shorelines woldwide: sources and sinks.* Environmental Science & Technology, 2011. **45**(21): p. 9175-9.
- 7. GESAMP, Sources, fate and effects of microplastics in the marine environment: A global assessment, in IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, P.J. Kershaw, Editor. 2015, GESAMP.
- 8. Lusher, A.L., M. McHugh, and R.C. Thompson, *Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel.* Marine Pollution Bulletin, 2013. **67**(1-2): p. 94-9.
- 9. Bridson, J.H., et al., *Microplastic contamination in Auckland (New Zealand) beach sediments.* Marine Pollution Bulletin, 2020. **151**.
- 10. Van Cauwenberghe, L. and C.R. Janssen, *Microplastics in bivalves cultured for human consumption.* Environ Pollut, 2014. **193**: p. 65-70.
- 11. Zhang, S., et al., *Microplastics in the environment: A review of analytical methods, distribution, and biological effects.* TrAC Trends in Analytical Chemistry, 2019. **111**: p. 62-72.
- 12. Drowning our marine life in a growing sea of plastic 2017 [cited 2018 01/01/18]; Available from:

https://www.nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11825914.

- 13. Clunies-Ross, P.J., et al., *Synthetic shorelines in New Zealand? Quantification and characterisation of microplastic pollution on Canterbury's coastlines.* New Zealand Journal of Marine and Freshwater Research, 2016. **50**(2): p. 317-325.
- 14. Third of turtles found dead on New Zealand beaches had ingested plastic. [cited 2021 28/01/2021]; Available from: <u>https://www.stuff.co.nz/environment/94277174/third-of-turtles-found-dead-on-new-zealand-beaches-had-ingested-plastic</u>.
- 15. [cited 2021 28/01/2021]; Available from: https://www.stuff.co.nz/environment/94879644/new-research-maps-massive-plasticpatch-floating-in-the-south-pacific.
- 16. Masura, J., et al., *Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments*, in *NOAA Technical Memorandium*, C. Herring, Editor. 2015, National Oceanic and Atmospheric Administration: Silver Spring.
- 17. Primpke, S., et al., An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Analytical Methods, 2017. **9**(9): p. 1499-1511.
- 18. Primpke, S., et al., *Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy.* Anal Bioanal Chem, 2018. **410**(21): p. 5131-5141.
- 19. de Sa, L.C., et al., 2018. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of The Total Environment, **645**: p. 1029-1039.
- 20. Foley, C.J., et al., 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ, **631-632**: p. 550-559.
- 21. Haegerbaeumer, A., et al., 2019. Impacts of Micro- and Nano-Sized Plastic Particles on Benthic Invertebrates: A Literature Review and Gap Analysis. Frontiers in Environmental Science, **. 7**.

- 22. Savoca, M.S., et al., 2017. Odours from marine plastic debris induce food search behaviours in a forage fish. Proceedings of the Royal Society B: Biological Sciences, **284**(1860).
- 23. Groh, K.J., et al., 2019. Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment, **651**: p. 3253-3268.
- 24. Campanale, C., et al., 2020. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International journal of environmental research and public health, **17**(4).
- 25. A.E. Schwarz, T.N. Ligthart, E. Boukris, T. van Harmelen, 2019. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study, Marine Pollution Bulletin, Volume 143, pp 92-100, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2019.04.029
- 26. Clunies-Ross, P.J., et al., 2016. Synthetic shorelines in New Zealand? Quantification and characterisation of microplastic pollution on Canterbury's coastlines. New Zealand Journal of Marine and Freshwater Research, **50**(2): p. 317-325.
- 27. Dikareva, N. and K.S. Simon, 2019. Microplastic pollution in streams spanning an urbanisation gradient. Environmental pollution, **250**: p. 292-299.
- 28. Godoy, Dan & Stockin, Karen, 2018. Anthropogenic impacts on green turtles Chelonia mydas in New Zealand. Endangered Species Research. 37. 10.3354/esr00908.
- 29. Moore, C. The South Pacific Gyre, 2016-2017 http://www.captain-charlesmoore.org/chile-2016
- 30. Primpke, S., et al. 2017. "An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis." Analytical Methods 9(9): 1499-1511.
- 31. Primpke, S., et al., 2018. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal Bioanal Chem, **410**(21): p. 5131-5141.
- 32. S.A. Carr, 2017. Sources and dispersive modes of micro-fibers in the environment, Integr. Environ. Assess. Manag., 13 (3) pp. 466-469
- 33. Remy, F., Collard, F., Gilbert, B., Compere, P., Eppe, G., Lepoint, G., 2015. When microplastic is not plastic: the ingestion of artificial cellulose fibers by macrofaunaliving in Seagrass Macrophytodetritus. Environ. Sci. Technol. 49, 11158–11166.
- 34. https://lakes380.com/lakes/taharoa/
- 35. Pabortsava, K., & Lampitt, R., 2020. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nature Communications, 1-11.
- 36. Zambrano, Marielis & Pawlak, Joel & Daystar, Jesse & Ankeny, Mary & Cheng, Jay & Venditti, Richard, 2019. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Marine Pollution Bulletin. 142. 394-407. 10.1016/j.marpolbul.2019.02.062.
- 37 Plastics Europe, 2017 https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017 _FINAL_for_website_one_page.pdf
- Bell, E.A. & Bell, M.D. 2018. INT2016-02 Identification of seabirds caught in New Zealand fisheries: 1 July 2017 to 30 June 2018. Annual Technical Report to the Conservation Services Programme, Department of Conservation. Wellington, New Zealand. 38 p.
- 39 Prata, J.C, 2018. Airborne microplastics: Consequences to human health? Environmental Pollution, Volume 234, pp 115-126, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2017.11.043.
- 40. Knobloch, E., Ruffell, H., Aves, A. et al., 2021. Comparison of Deposition Sampling Methods to Collect Airborne Microplastics in Christchurch, New Zealand. Water Air Soil Pollut 232, 133. https://doi.org/10.1007/s11270-021-05080-9
- 41. Hidalgo-Ruz, V., et al. 2012. "Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification." Environmental Science & Technology 46: 3060-3075.
- 42. Kroon, F., et al. sss2018. "A workflow for improving estimates of microplastic contamination in marine waters: A case study from North-Western Australia." Environmental Pollution 238: 26-38.

Appendix A

Sampling location coordinates

	LATITUDE	LONGITUDE
OMAMARI NORTH	-35.8673477	173.662825
OMAMARI SOUTH	-35.8723164	173.66753
ONERAHI NORTH	-35.7666025	174.357334
ONERAHI SOUTH	-35.7670962	174.35752
PAIHIA NORTH	-35.2854109	174.094349
PAIHIA SOUTH	-35.286821	174.096942
RARAWA NORTH	-34.7175429	173.075975
RARAWA SOUTH	-34.7200117	173.079188
SANDY NORTH	-35.5572355	174.473246
SANDY SOUTH	-35.5595612	174.47769
TAHAROA NORTH	-35.8097499	173.661959
TAHAROA SOUTH	-35.8113558	173.661773
WAIPU NORTH	-36.0288554	174.505372
WAIPU SOUTH	-36.0317037	174.508267
WAIPAPAKAURI N	-35.0399015	173.16749
WAIPAPAKAURI S	-35.0432365	173.168516
GLINKS GULLY NORTH	-36.0820297	173.854919
GLINKS GULLY SOUTH	-36.0905891	173.861943
AHIPARA NORTH	-35.1570216	173.15765
AHIPARA SOUTH	-35.1611912	173.15477
MANGAWHAI NORTH	-36.0801013	174.596865
MANGAWHAI SOUTH	-36.0828291	174.598486

Appendix B

Summary of locations provided by Northland regional Council

Site name	Popular activities
Ahipara WC	High Seasonal recreational use (beach access for driving and surfing all year) (WAUC/DC) prevailing wind SW, W
Waipapakauri WC	High Seasonal recreational use (beach access for driving and shellfish collection all year) West Auckland Current/D'Urville Current (WAUC/DC) prevailing wind SW, W
Glinks Gully WC	High Seasonal recreational use (beach access for driving, fishing and shellfish collection) (WAUC/DC) prevailing wind SW, W
Omamari WC	High Seasonal recreational use (beach access for driving and fishing) (WAUC/DC) prevailing wind SW, W
Lake Taharoa	Dune Lake-very popular during summer, High recreational use- Lake, site on west facing shore adjacent to camping and lake access, prevailing wind SW, W
Paihia EC	Semi-suburban, High Rec Use year-round, busy tourist location (EAUC) prevailing wind E, NE
Rarawa EC	High Seasonal Recreational Use, East Auckland Current (EAUC), prevailing wind E, NE
Sandy Bay EC	High Recreational Use (year-round) popular and significant surf break (EAUC) prevailing wind E, NE
Onerahi Upper Whangarei Harbour	Suburban, adjacent to large vessel maintenance facilities and multiple Stormwater outlets, prevailing wind SW, W, E, NE
Waipu Cove Bay EC	High Rec Use (year-round) popular surf break (EAUC) busy Campground adjacent to sites, prevailing wind E, NE, SW
Mangawhai EC	High Rec Seasonal Use, popular surf break (EAUC) busy swimming/surfing beach, prevailing wind E, NE, SW

EC- East coast WC- West coast

Appendix C

Large microplastic particles: Mean Concentrations per Site (MP/kg DW, MP/m², MP/m³)

	_		Summe			Winter			
Site Name	Zone	MP / kg DW	MP/m^2	MP / m ³	MP / kg DW	MP/m^2	MP / m^3		
Ahipara North	West	1 ± 1	56 ± 98	1127 ± 1951	6 ± 6	369 ± 385	7386 ± 7708		
Ahipara South	West	nd	nd	nd	4 ± 5	295 ± 363	5904 ± 7254		
Waipapakauri North	West	3 ± 3	256 ± 205	5119 ± 4095	3 ± 4	225 ± 255	4493 ± 5103		
Waipapakauri South	West	5 ± 4	356 ± 251	7118 ± 5029	2 ± 0	171 ± 2	3418 ± 43		
Glinks Gully North	West	2 ± 1	107 ± 98	2142 ± 1956	2 ± 4	182 ± 315	3641 ± 6307		
Glinks Gully South	West	5 ± 6	203 ± 237	4057 ± 4730	nd	nd	nd		
Omamari North	West	3 ± 1	217 ± 82	4344 ± 1642	3 ± 4	242 ± 276	4834 ± 5522		
Omamari South	West	7 ± 11	501 ± 787	10029 ± 15744	2 ± 0	183 ± 6	3659 ± 126		
Paihia North/ South	East	1 ± 2	88 ± 150	1770 ± 3003	6 ± 1	371 ± 107	7416 ± 2138		
Paihia North/ South	East	nd	nd	nd	3 ± 1	217 ± 95	4332 ± 1896		
Rarawa North	East	2 ± 2	182 ± 178	3644 ± 3557	2 ± 2	159 ± 152	3179 ± 3034		
Rarawa South	East	2 ± 3	122 ± 211	2434 ± 4216	2 ± 2	174 ± 177	3485 ± 3534		
Sandy North	East	8 ± 10	629 ± 762	12578 ± 15249	9 ± 6	697 ± 469	13939 ± 9379		
Sandy South	East	7 ± 4	516 ± 312	10315 ± 6230	2 ± 1	235 ± 203	4692 ± 4063		
Waipu North	East	1 ± 1	56 ± 98	1129 ± 1956	12 ± 7	814 ± 432	16285 ± 8646		
Waipu South	East	nd	nd	nd	3 ± 1	213 ± 90	4251 ± 1798		
Mangawhai North	East	7 ± 4	486 ± 275	9712 ± 5496	7 ± 4	530 ± 298	10605 ± 5952		
Mangawhai South	East	3 ± 1	237 ± 102	4746 ± 2048	10 ± 2	686 ± 156	13715 ± 3112		
Onerahi (North)	East	nd	nd	nd	1 ± 1	57 ± 100	1149 ± 1991		
Onerahi (South)	East	nd	nd	nd	1 ± 1	60 ± 104	1197 ± 2073		
Taharoa North	West	1 ± 1	68 ± 118	1365 ± 2364	nd	nd	nd		
Taharoa South	West	1 ± 1	65 ± 112	1297 ± 2246	1 ± 1	66 ± 114	1319 ± 2285		

ND- none detected

Appendix D

A. Statistical Results (LMPP)

1. ONE WAY ANOVA - NORTHLAND SITES

NORTH VS SOUTH

One-way ANOVA: MP/kg DW versus Location

Method

Null hypothesis	All means are equal
Alternative hypothesis	Not all means are equal
Significance level	α = 0.05

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels Values
Location	11 Ahipapara, Glinks, mangawhai, Omamari, Onerahi,
	Paihia, Rarawa, Sandy,
	Taharoa, Waipapakauri, Waipu
Analysis of Va	riance

Analys

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Location	10	538.8	53.88	3.29	0.001
Error	137	2240.7	16.36		
Total	147	2779.4			


Model Summary

		R-	R-
S	R-sq	sq(adj)	sq(pred)
4.04417	19.38%	13.50%	5.84%

Means

Location	Ν	Mean StDev	95% CI
Ahipapara	12	2.71 4.32	(0.40, 5.02)
Glinks	16	2.499 3.975	(0.500, 4.499)
mangawhai	12	6.66 3.59	(4.36, 8.97)
Omamari	16	4.21 6.17	(2.21, 6.21)
Onerahi	16	0.312 0.854	(-1.687, 2.312)
Paihia	12	2.915 2.574	(0.607, 5.224)
Rarawa	12	2.253 2.204	(-0.056, 4.561)
Sandy	12	6.46 6.16	(4.15, 8.77)
Taharoa	12	0.625 1.130	(-1.684, 2.933)
Waipapakauri	16	3.749 2.886	(1.750, 5.748)
Waipu	12	4.17 5.96	(1.86, 6.47)

Pooled StDev = 4.04417

T-TEST COMPARISONS

2A. Summer vs Winter

Method

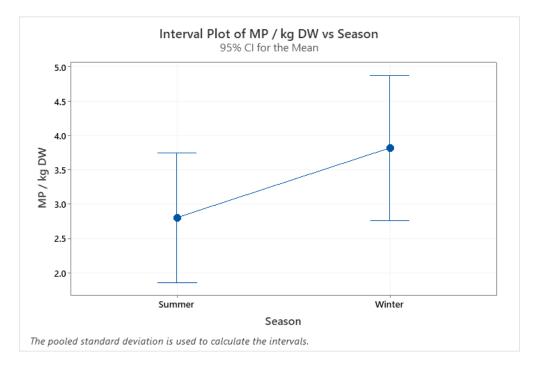
Null hypothesis	All means are equal
Alternative hypothesis	Not all means are
	equal
Significance level	α = 0.05

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels Values
Season	2 Summer,
	Winter

Analysis of Variance


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Season	1	37.61	37.61	2.00	0.159
Error	146	2741.83	18.78		
Total	147	2779.43			

Model Summary

	S	R-sq	R-sq(adj)	R-sq(pred)
	4.33355	1.35%	0.68%	0.00%
Μ	eans			

Season	Ν	Mean	StDev	95% CI
Summer	82	2.803	4.397	(1.858, 3.749)
Winter	66	3.817	4.253	(2.763, 4.872)

Pooled StDev = 4.33355

2B. East vs West (excluding Taharoa and Onerahi)

Method

Null hypothesis	All means are equal
Alternative hypothesis	Not all means are equal
Significance level	α = 0.05

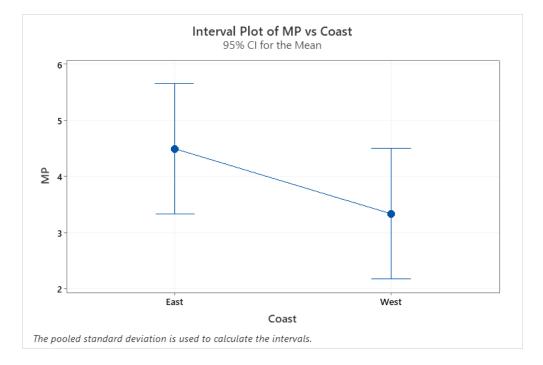
Equal variances were assumed for the analysis.

Factor Information

Factor Lev	els Values	
Coast	2 East, West	

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Coast	1	40.34	40.34	1.95	0.165
Error	118	2440.90	20.69		
Total	119	2481.24			


Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
4.54814	1.63%	0.79%	0.00%

Means

Coast	Ν	Mean	StDev	95% CI
East	60	4.491	4.642	(3.328, 5.654)
West	60	3.331	4.452	(2.169, 4.494)

Pooled StDev = 4.54814

2C. North vs South

One-way ANOVA: MP/kg DW versus Site

Method

Null hypothesisAll means are equalAlternative hypothesisNot all means are equalSignificance levelα = 0.05Rows unused6

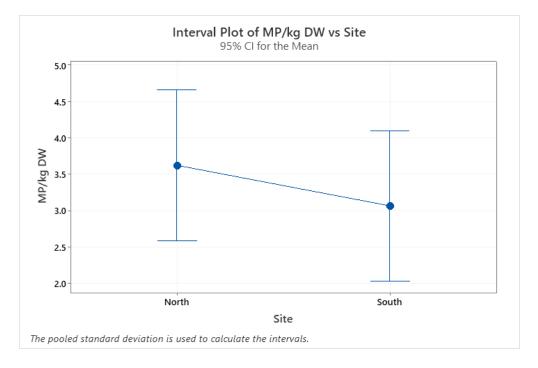
Equal variances were assumed for the analysis.

Factor Information

Factor	Lev	els Value	S		
Site		2 North,	South		
Analysis	of V	ariance	e		
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	1	10.99	10.99	0.57	0.453
Error	140	272142	19 44		

Total 141 2732.41 Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
4.40893	0.40%	0.00%	0.00%


Means

 Site
 N
 Mean
 StDev
 95% Cl

 North
 71
 3.619
 4.485
 (2.584, 4.653)

 South
 71
 3.062
 4.332
 (2.028, 4.097)

Pooled StDev = 4.40893

2C. Auckland vs. Northland

Two-Sample T-Test and CI: MP/kg DW, Region

Method

 μ_1 : population mean of MP/kg DW when Region = Auckland μ_2 : population mean of MP/kg DW when Region = Northland Difference: μ_1 - μ_2

Equal variances are not assumed for this analysis.

Descriptive Statistics: MP/kg DW

Region	Ν	Mean	StDev	SE Mean
Auckland	55	6.03	7.20	0.97
Northland	d 148	3.26	4.35	0.36
Estimation for Difference				

95% CI for Difference Difference

2.77	(0.71,	4.83)

0

Test

$$\label{eq:hypothesis} \begin{split} & H_0:\,\mu_1-\mu_2=0\\ \\ & \text{Alternative hypothesis} \quad H_1:\,\mu_1-\mu_2\neq 0\\ \hline \hline \begin{array}{c} \textbf{T-Value} \quad \textbf{DF} \quad \textbf{P-Value}\\ \hline \hline \begin{array}{c} 2.68 \quad 69 \quad 0.009 \end{array} \end{split}$$

Boxplot of MP/kg DW

Auckland

Region

Northland

B. Statistical Results (SMPP)

One-way ANOVA: Concentration versus Site

Method

Null hypothesis	All means are equal
Alternative hypothesis	Not all means are equal
Significance level	α = 0.05

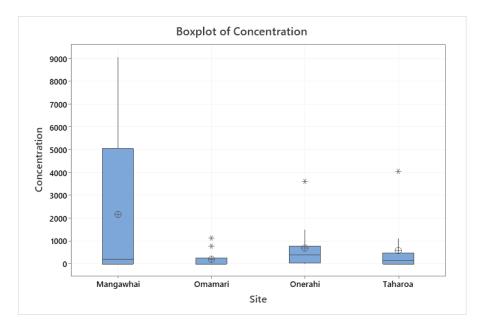
Equal variances were assumed for the analysis.

Factor Information

Factor	Levels	Values
Site	4	Mangawhai, Omamari,
		Onerahi, Taharoa

Analysis of Variance

Source	e DF	Adj SS	Adj MS	F-Value	P-Value
Site	3	26961067	8987022	2.81	0.050
Error	44	140806981	3200159		
Total	47	167768048			


Model Summary

		R-	R-
S	R-sq	sq(adj)	sq(pred)
1788.90	16.07%	10.35%	0.12%

Means

Site	Ν	Mean S	StDev	95% CI
Mangawhai	12	2170	3213	(1129, 3211)
Omamari	12	202	364	(-839, 1243)
Onerahi	12	697	1019	(-344, 1737)
Taharoa	12	575	1144	(-466, 1616)

Pooled StDev = 1788.90

WORKSHEET 1

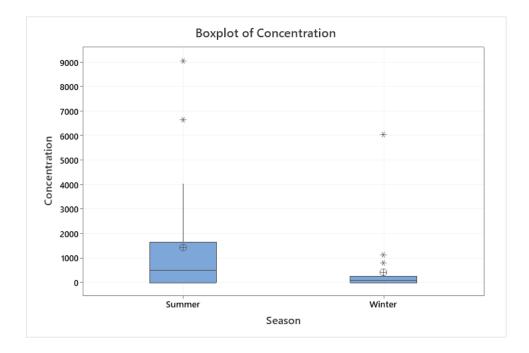
T- test comparison: Concentration vs. Season

Method

 μ_1 : population mean of Concentration when Season = Summer μ_2 : population mean of Concentration when Season = Winter Difference: μ_1 - μ_2

Equal variances are not assumed for this analysis.

Descriptive Statistics: Concentration


Season N	Mean	StDev	SE Mean
Summer 24	1417	2290	467
Winter 24	405	1232	251

Estimation for Difference

	95% CI for
Difference	Difference
1013	(-65, 2090)

Test

Null hypothesis Alternative hypothesis		$H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$
Т-		
Value	DF	P-Value
1.91	35	0.065

Two-Sample T-Test and CI: Concentration vs. sampling location

One-way ANOVA: MP/kg DW versus Site

Method

Null hypothesis	All means are equal
Alternative hypothesis	Not all means are equal
Significance level	α = 0.05

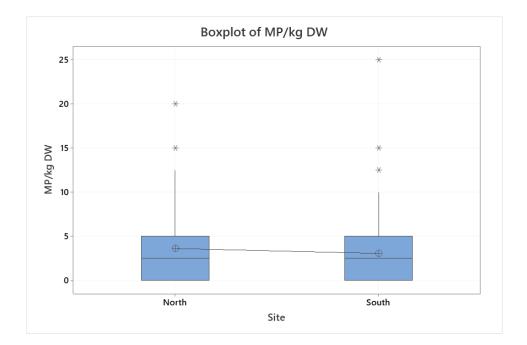
Equal variances were assumed for the analysis.

Factor Information

Factor	Levels Values
Site	2 North, South

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	1	10.99	10.99	0.57	0.453
Error	140	2721.42	19.44		
Total	141	2732.41			


Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
4.40893	0.40%	0.00%	0.00%

Means

Site	Ν	Mean	StDev	95% CI
North	71	3.619	4.485	(2.584, 4.653)
South	71	3.062	4.332	(2.028, 4.097)

Pooled StDev = 4.40893

