38 Whatuwhiwhi

38.1 Description and geomorphology

The site is located at the northern end of Doubtless Bay and extends for 2 km of south facing coast and includes sections of headland cliff and three pocket beaches. Figure 38.1 shows the site sand its division into eight coastal cells for the purpose of assessing coastal erosion hazards. Site photos showing key features of the site are presented in Figure 38.2.

The site starts at the north end of Tokerau Beach with a section of cliff before a small pocked beach with no public access. The middle beach is Parakerake Bay, which has public vehicle and pedestrian access and a holiday park across the road. The third pocket beach, referred to here as Waihapurua has a modern dynamic beach and dune system backed by a sequence of dunes deposited in the Holocene. Coastal sediment deposition and dune formation in the Holocene appears to have filled in the embayment at Waihapurua, with the modern backshore characterised by a low elevation foredunes. Holocene sediments extend 250–500 m landward of the modern shoreline. The three pocket beaches are separated by headlands with a dominant geology of basalt and basaltic andesite. Each pocket beach is characterised by similar sediment, with moderately sorted coarse sand at the upper beach and well sorted medium sand and the lower intertidal beach. Cliff cells are typically rocky with no beach at the toe.

Stream flow has an influence on the morphology and development of the two larger pocket beaches (Parakerake and Waihapurua), with beach streams situated at the eastern end of each beach that create a low terrace at the corner of each beach. The stream at Parekereke runs alongshore at the bank toe before turning seaward and discharging into the sea. Stream action locally lowers the beach and forms a low point that allows tidal flow and waves to reach the bank toe. Away from the streams, both beaches decrease in width moving west but have steeper profiles and more developed and vegetated fore-dune features.

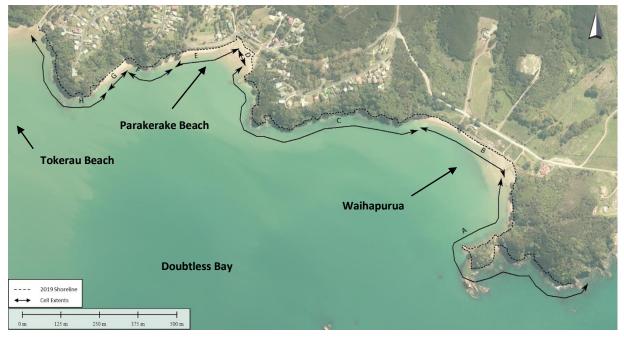


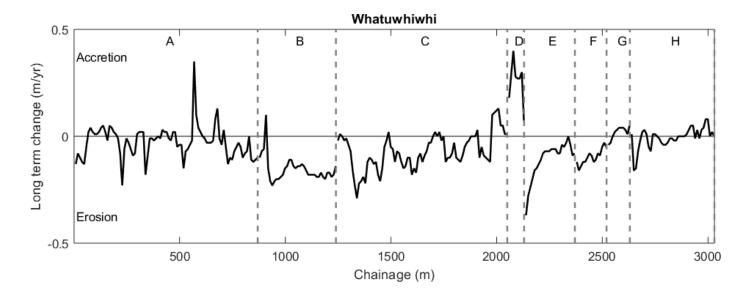
Figure 38.1: Map showing 2019 shoreline position and cell extents with background aerial imagery from 2014.

Figure 38.2: Photos from Whatuwhiwhi site visit on 22/01/2020.

38.2 Local considerations

A road follows the coast at Parekereke Beach, with the road edge within 5 m of the bank toe in places. Vehicle access is used on both larger embayment beaches for launching boats. Vehicle access has a localised impact on dune formation and stability.

38.3 Component values


The site is split into eight cells based on coastal type and the interchange between cliff headland and pocket beaches. There are four cliff cells and four beach cells. Two of the beach cells are characterised by a dune system and two are characterised by a vegetated terrace with limited space for a wind-blown dune to form.

All cliff cells (Cells A, C, F, H) have a consistent geology of underlying basalt, resulting in a relative stable hard cliff that can sustain a steep slope and a damped response to sea level rise. Cliff height is

similar at these cells with a mean of 30 m based on height between toe and crest extracted from LiDAR data. Adopted long-term rates did not consider positive values because erosion on consolidated shorelines is not balanced by accretion. Positive rates may be influenced by landslides and slips.

Beach cells at Whatuwhiwhi (Cells B, D, E, G) are small pocket beaches that are influenced by neighbouring headlands and Holocene infill of sediment in landward valleys. The eastern beach (Waihapurua) is represented in a single cell (B) and has a modern foredune, narrow backshore and low tide terrace formation. Historic shoreline analysis at Cell B indicates a long-term trend of erosion with a mean rate of -0.1 m/yr. The central beach (Parekereke) is split into two cells. Cell D is a discrete section east of the stream where sand dunes have built up in recent years. Cell E is west of the stream and is backed by a vegetated unconsolidated coastal terrace with little accommodation space between the road and beach. Historic shoreline change at Parekereke indicates a period of beach rotation where Cell D to the east is building up with sand dunes and Cell E to the west is erosion. This may be associated with beach stream channel migration in recent decades (Figure 38.1). Coast Care planting has been undertaken at Cell E to stabilise the bank and encourage sediment retention. Beaches backed by unconsolidated by vegetated terrace are considered to be less dynamic than dune systems and therefore have a lower short-term component. Consistent values were used for closure slope at all beach cells, using the method outlined in Section 4.6.5 of T+T (2020).

Cell G is the small pocket beach west of Parekereke, characterised by a vegetated coastal terrace that extends landward for 20-30 m before reaching the cliff toe. Coastal erosion at Cell G was assessed using the consolidated cliff method due to the small volume of sand on the beach and the vegetated backshore.

Figure 38.3: Rate of long-term shoreline change along the site showing each cell.

Site		38. Whatuwhiw	/hi						
Cell		38A	38B	38C	38D	38E	38F	38G	38H
Cell centre	E	1636369	1636401	1635804	1635670	1635571	1635361	1635267	1635025
(NZTM)	N	6139988	6140374	6140396	6140668	6140662	6140596	6140595	6140618
Chainage, m (from E)		1-860	870-1230	1240-2040	2050-2120	2130-2360	2370-2510	2520-2620	2630-3020
Morphology		Basalt lava cliff	Dune	Basalt lava cliff	Dune	Coastal terrace	Basalt lava cliff	Consolidated terrace	Basalt lava cliff
	Min	-	5	-	5	2	-	-	-
Short-term (m)	Mode	-	8	-	8	4	-	-	-
	Max	-	10	-	10	6	-	-	-

Table 38.1: Component values for Erosion Hazard Assessme
--

October 2020 Job No: 1012360

Site		38. Whatuwhiw	'ni						
Cell		38A	38B	38C	38D	38E	38F	38G	38H
Dune/Cliff elevation (m	Min	20	0.4	15	0.5	1.7	27	0.5	30
above toe or	Mode	35	2.0	30	1.3	3.3	30	1.6	35
scarp)	Max	45	3.3	45	2.1	5.5	35	2.5	37
	Min	45	30	45	30	30	45	30	45
Stable angle (deg)	Mode	57.5	32	57.5	32	32	57.5	32	57.5
(Max	70	34	70	34	34	70	34	70
Long-term (m)	Min	-0.15	-0.20	-0.15	0.00	-0.15	-0.15	0	-0.15
-ve erosion +ve accretion	Mode	-0.05	-0.15	-0.05	0.10	-0.07	-0.05	0.025	-0.05
	Max	0.00	-0.10	0.00	0.25	0.00	0.00	0.05	0.00
Closure slope	Min	0.00	0.013	0.00	0.013	0.013	0.00	0.3	0.00
(beaches) / Cliff	Mode	0.05	0.018	0.05	0.018	0.018	0.05	0.4	0.05
response factor	Max	0.10	0.084	0.10	0.084	0.084	0.10	0.5	0.10

Table 38.2: Adopted sea level rise values (m) based on four scenarios included in MfE (2017) adjusted to 2019 baseline

Coastal type	Year	RCP2.6M	RCP4.5M	RCP8.5M	RCP8.5+
Consolidated cliff	2080	0.29	0.34	0.46	0.64
	2130	0.52	0.66	1.09	1.41
Unconsolidated beach ¹	2080	0.16	0.21	0.33	0.51
	2130	0.28	0.42	0.85	1.17

¹Adjusted to remove the influence of historic SLR (2.2 mm/year) on long-term rates of shoreline change

38.4 Coastal erosion hazard assessment

Histograms of individual components and resultant CEHZ distances computed using a Monte Carlo technique are shown in Figure 38.4 to Figure 38.11. Coastal Erosion Hazard Zone widths and future shoreline distances are presented within Table 38.3 to Table 38.5 and mapped in Figure 38.12.

For Cells B, D and E, CEHZ1 values range from 15 to 26 m, with Cell D rounded up from 9 m to the minimum value of 15 m for dunes. CEHZ2 values range from 47 to 76 m and CEHZ3 values range from 65 to 94 m.

For cliff cells, the cliff projection method was used to identify total coastal erosion hazard distances. Therefore, probabilistic outputs presented below are specific to the future toe recession distance. Toe recession distances range from 2 to 3 m to 2080 for RCP8.5, 7 to 15 m to 2130 for RCP8.5 and 8 to 15 m for RCP8.5+.

The toe recession distance and stable angle were used to project the total hazard zone but projecting the stability zone on LiDAR extracted profiles spaced in 10 m intervals. A summary of the resulting total coastal erosion hazard distance for cliff cells is presented in Table 38.6.

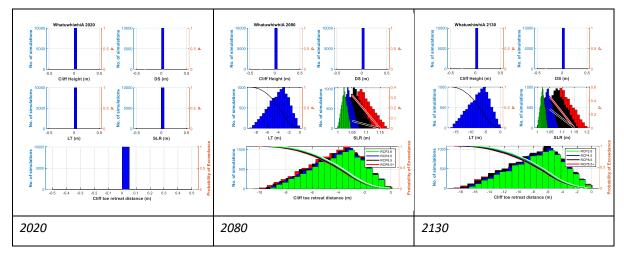


Figure 32.17 shows the available historic shorelines for Whatuwhiwhi.

Figure 38.4: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38A

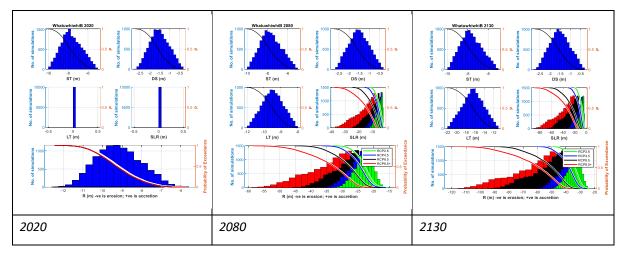
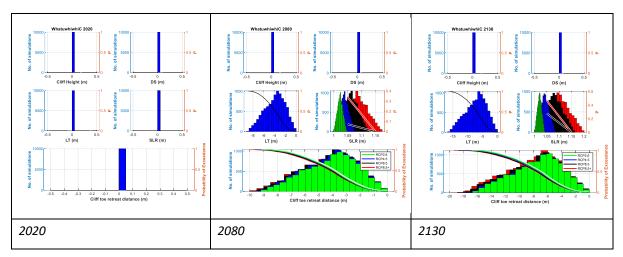
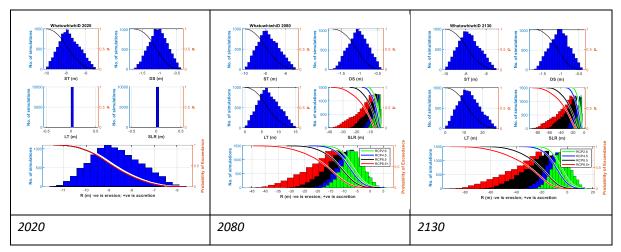




Figure 38.5: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38B

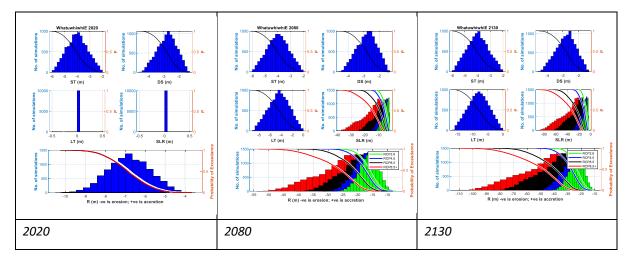

392

Figure 38.6: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38C

Figure 38.7: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38D

Figure 38.8: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38E



Figure 38.9: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38F

Figure 38.10: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38G

Figure 38.11: Histograms of parameter samples and the resultant shoreline distances for 2020, 2080 and 2130 timeframes for cell 38H

Si	te				38. What	tuwhiwhi			
	Cell	38A*	38B	38C*	38D	38E	38F*	38G*	38H*
	Min	0	-6	0	-6	-4	0	0	0
	99%	0	-7	0	-6	-5	0	0	0
	95%	0	-7	0	-7	-5	0	0	0
	90%	0	-8	0	-7	-5	0	0	0
JCe	80%	0	-8	0	-8	-6	0	0	0
Probability of CEHZ (m) Exceedance	70%	0	-9	0	-8	-6	0	0	0
Exce	66%	0	-9	0	-8	-6	0	0	0
(u)	60%	0	-9	0	-8	-7	0	0	0
EHZ	50%	0	-9	0	-9	-7	0	0	0
of CI	40%	0	-10	0	-9	-7	0	0	0
ility	33%	0	-10	0	-9	-7	0	0	0
bab	30%	0	-10	0	-9	-7	0	0	0
Pro	20%	0	-10	0	-10	-8	0	0	0
	10%	0	-11	0	-10	-8	0	0	0
	5%	0	-11	0	-10	-9	0	0	0
	1%	0	-12	0	-11	-9	0	0	0
	Max	0	-12	0	-11	-10	0	0	0

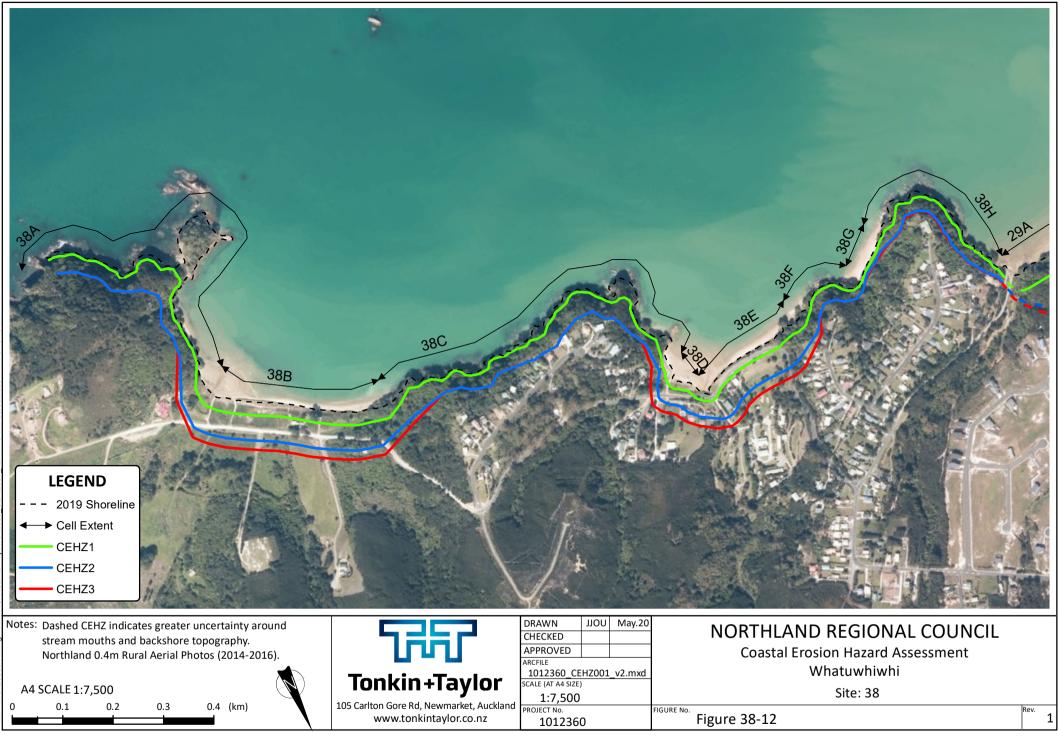
Table 38.3: Coastal Erosion Hazard Zone Widths (m) Projected for 2020

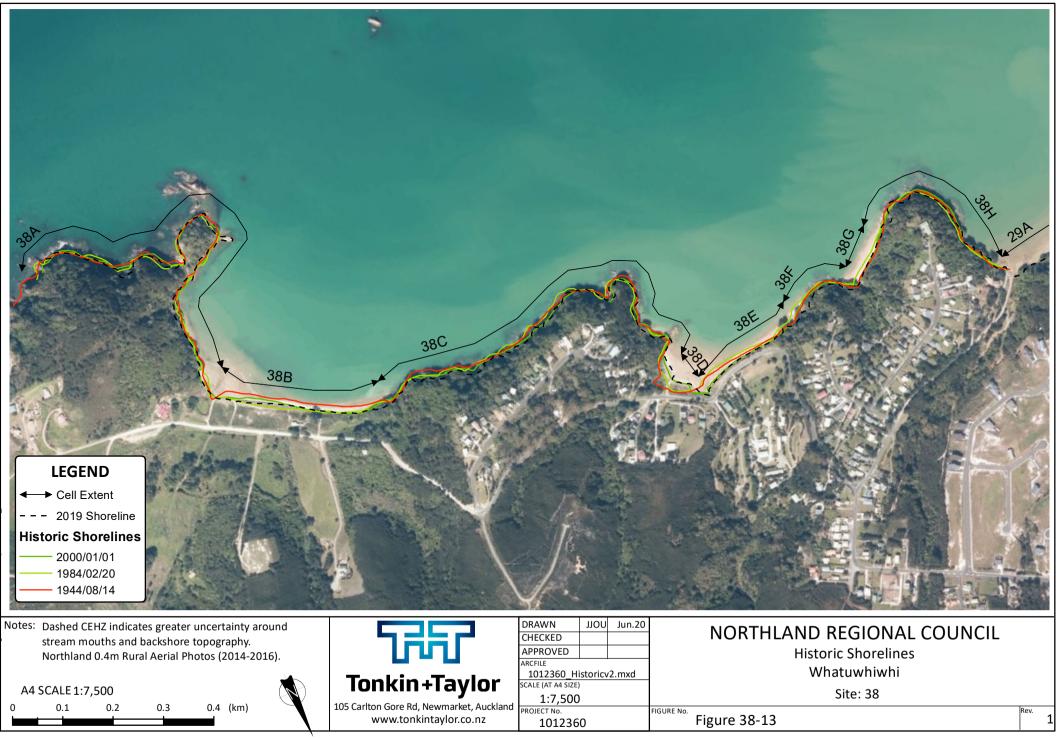
*Cliff projection method has been used, so cliff toe position has been tabulated, which has been assumed to be unchanged from the adopted 2019 baseline. Actual CEHZ width will be greater depending on cliff height and stable slope angle.

Site									38. What	uwhiwhi							
Cell			3	38A			3	38B				38C			3	88D	
RCP sce	nario	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+
	Min	0	0	0	0	-15	-16	-18	-20	0	0	0	0	6	5	4	2
	99%	-1	-1	-1	-1	-18	-19	-20	-23	-1	-1	-1	-1	2	1	-1	-4
	95%	-1	-1	-1	-1	-19	-20	-22	-25	-1	-1	-1	-1	0	-1	-4	-7
	90%	-2	-2	-2	-2	-20	-21	-23	-26	-2	-2	-2	-2	-2	-3	-5	-9
U	80%	-2	-2	-2	-2	-21	-22	-24	-28	-2	-2	-2	-3	-3	-5	-7	-11
lanc	70%	-3	-3	-3	-3	-22	-23	-25	-29	-3	-3	-3	-3	-5	-6	-9	-13
Probability of CEHZ (m) Exceedance	66%	-3	-3	-3	-3	-22	-23	-26	-30	-3	-3	-3	-3	-5	-6	-9	-13
) Ex	60%	-3	-3	-3	-4	-22	-23	-26	-31	-3	-3	-4	-4	-6	-7	-10	-15
IZ (n	50%	-4	-4	-4	-4	-23	-24	-28	-33	-4	-4	-4	-4	-7	-8	-11	-16
也	40%	-4	-5	-5	-5	-24	-25	-29	-35	-4	-5	-5	-5	-8	-9	-13	-18
ty of	33%	-5	-5	-5	-5	-24	-26	-30	-36	-5	-5	-5	-5	-8	-10	-14	-20
abili	30%	-5	-5	-5	-5	-24	-26	-31	-37	-5	-5	-5	-5	-9	-10	-15	-21
rob	20%	-6	-6	-6	-6	-25	-28	-33	-41	-6	-6	-6	-6	-10	-12	-17	-24
-	10%	-7	-7	-7	-7	-27	-29	-36	-45	-7	-7	-7	-7	-12	-14	-20	-29
	5%	-7	-8	-8	-8	-28	-31	-38	-48	-8	-8	-8	-8	-13	-16	-22	-32
	1%	-8	-9	-9	-9	-30	-33	-41	-53	-9	-9	-9	-9	-16	-19	-26	-37
	Max	-9	-9	-10	-10	-33	-37	-45	-59	-9	-9	-10	-10	-20	-23	-32	-44
	CEHZ1			-3*				-26				-3*				-15	

Table 38.4: Coastal Erosion Hazard Zone Widths (m) Projected for 2080

Site									38. V	Vhatuwhiw	hi						
Cell			3	8E			38	ßF			38	G			38	вн	
RCP	scenario	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+
	Min	-7	-8	-10	-12	0	0	0	0	0	0	0	0	0	0	0	0
	99%	-10	-11	-13	-16	-1	-1	-1	-1	0	0	0	0	-1	-1	-1	-1
	95%	-12	-12	-15	-18	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	90%	-12	-13	-16	-19	-2	-2	-2	-2	-1	-1	-1	-1	-2	-2	-2	-2
	80%	-14	-15	-17	-21	-2	-2	-2	-3	-1	-1	-1	-2	-2	-2	-2	-3
CEHZ (m) Exceedance	70%	-14	-16	-18	-22	-3	-3	-3	-3	-1	-2	-2	-2	-3	-3	-3	-3
ceed	66%	-15	-16	-19	-23	-3	-3	-3	-3	-1	-2	-2	-2	-3	-3	-3	-3
) Exe	60%	-15	-17	-20	-24	-3	-3	-4	-4	-2	-2	-2	-3	-3	-3	-3	-4
اz (س	50%	-16	-17	-21	-26	-4	-4	-4	-4	-2	-2	-2	-3	-4	-4	-4	-4
	40%	-17	-18	-22	-28	-4	-5	-5	-5	-2	-2	-3	-3	-4	-4	-5	-5
ty of	33%	-18	-19	-23	-30	-5	-5	-5	-5	-2	-2	-3	-3	-5	-5	-5	-5
Probability	30%	-18	-20	-24	-30	-5	-5	-5	-5	-2	-2	-3	-3	-5	-5	-5	-5
Prob	20%	-19	-21	-26	-34	-6	-6	-6	-6	-2	-3	-3	-4	-6	-6	-6	-6
	10%	-20	-23	-29	-38	-7	-7	-7	-7	-3	-3	-4	-4	-7	-7	-7	-7
	5%	-22	-24	-31	-41	-8	-8	-8	-8	-3	-3	-4	-5	-8	-8	-8	-8
	1%	-24	-27	-34	-46	-9	-9	-9	-9	-3	-4	-5	-5	-8	-9	-9	-9
	Max	-28	-32	-41	-53	-9	-10	-10	-10	-4	-4	-5	-6	-9	-9	-10	-10
	CEHZ1		-:	19			-3	*			-2	*			-3	*	


Site									38. What	uwhiwhi							
Cell			3	88A				38B				38C			:	38D	
RCP s	scenario	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+
	Min	0	0	0	0	-23	-25	-31	-36	0	0	0	0	15	13	8	4
	99%	-1	-1	-1	-1	-26	-28	-35	-39	-1	-1	-1	-1	10	8	1	-4
	95%	-2	-2	-2	-2	-28	-30	-37	-42	-2	-2	-2	-2	7	4	-4	-10
	90%	-3	-3	-3	-3	-29	-32	-39	-44	-3	-3	-3	-3	4	1	-7	-13
	80%	-4	-4	-5	-5	-31	-33	-42	-48	-4	-5	-5	-5	1	-2	-11	-18
ce	70%	-5	-5	-6	-6	-32	-35	-44	-51	-5	-6	-6	-6	-1	-5	-15	-22
Probability of CEHZ (m) Exceedance	66%	-6	-6	-6	-6	-32	-35	-45	-52	-6	-6	-6	-6	-2	-6	-16	-23
Exce	60%	-6	-6	-7	-7	-33	-36	-47	-55	-6	-6	-7	-7	-3	-7	-17	-25
(m)	50%	-7	-7	-7	-8	-34	-38	-50	-59	-7	-7	-8	-8	-5	-9	-21	-29
EHZ	40%	-8	-8	-9	-9	-35	-40	-53	-63	-8	-8	-9	-9	-7	-11	-24	-34
of C	33%	-9	-9	-9	-10	-36	-41	-56	-68	-9	-9	-10	-10	-8	-12	-27	-38
ility	30%	-9	-9	-10	-10	-37	-42	-58	-70	-9	-10	-10	-10	-8	-13	-28	-40
obab	20%	-11	-11	-11	-12	-38	-44	-63	-77	-11	-11	-11	-12	-11	-16	-34	-48
Pro	10%	-12	-13	-13	-13	-41	-48	-71	-88	-12	-13	-13	-13	-14	-20	-41	-58
	5%	-14	-14	-15	-15	-43	-51	-76	-94	-14	-14	-15	-15	-16	-23	-47	-65
	1%	-16	-16	-17	-17	-46	-55	-83	-105	-15	-16	-16	-17	-21	-29	-56	-76
	Max	-17	-17	-19	-19	-51	-62	-94	-119	-17	-17	-19	-19	-28	-38	-68	-91
	CEHZ2		-	15*				-76			-	15*				-47	
	CEHZ3		-	15*				-94			-	15*				-65	


Table 38.5: Coastal Erosion Hazard Zone Widths (m) Projected for 2130

Site									38. What	uwhiwhi							
Cell			3	38E			3	38F			:	38G			3	38H	
RCP s	scenario	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+	2.6	4.6	8.5	8.5+
	Min	-10	-12	-18	-22	0	0	0	0	5	6	9	10	0	0	0	0
	0.99	-13	-15	-22	-27	-1	-1	-1	-1	3	4	6	8	-1	-1	-1	-1
	95%	-16	-18	-26	-31	-2	-2	-2	-2	2	3	4	5	-2	-2	-2	-2
	90%	-17	-20	-28	-33	-3	-3	-3	-3	1	2	3	4	-3	-3	-3	-3
	80%	-19	-22	-31	-37	-4	-4	-5	-5	0	0	1	2	-4	-4	-5	-5
e	70%	-21	-24	-33	-40	-5	-5	-6	-6	-1	-1	0	0	-5	-5	-6	-6
Probability of CEHZ (m) Exceedance	66%	-21	-25	-34	-42	-6	-6	-6	-6	-1	-1	-1	-1	-6	-6	-6	-6
Exce	60%	-22	-26	-36	-44	-6	-6	-7	-7	-2	-2	-1	-1	-6	-6	-7	-7
(m) (m)	50%	-23	-27	-39	-48	-7	-7	-8	-8	-3	-3	-3	-3	-7	-7	-8	-8
EHZ	40%	-25	-29	-43	-53	-8	-8	-9	-9	-3	-3	-4	-4	-8	-8	-9	-9
of C	33%	-26	-31	-46	-57	-9	-9	-9	-10	-4	-4	-4	-5	-9	-9	-9	-10
ility	30%	-26	-31	-47	-59	-9	-10	-10	-10	-4	-4	-5	-5	-9	-9	-10	-10
bab	20%	-28	-34	-53	-67	-11	-11	-11	-11	-5	-5	-6	-7	-11	-11	-11	-11
Pro	10%	-31	-38	-60	-77	-13	-13	-13	-14	-6	-7	-8	-9	-12	-13	-13	-13
	5%	-33	-41	-65	-83	-14	-14	-15	-15	-7	-8	-10	-10	-14	-14	-14	-15
	1%	-37	-45	-73	-94	-15	-16	-16	-17	-8	-9	-11	-13	-15	-16	-16	-17
	Max	-43	-53	-85	-109	-17	-17	-18	-19	-10	-11	-14	-16	-17	-18	-19	-19
	CEHZ2		-	-65			-	15*			-	10*			-	14*	
	CEHZ3		-	-83			-	15*			-	10*			-	15*	

	CEHZ1			CEHZ2			CEHZ3				
Cell	Min (m)	Average (m)	Max (m)	Min (m)	Average (m)	Max (m)	Min (m)	Average (m)	Max (m)		
38A	-3	-5	-11	-17	-30	-41	-17	-30	-41		
38C	-3	-6	-17	-16	-31	-46	-16	-31	-46		
38F	-3	-4	-6	-16	-28	-34	-16	-28	-34		
38G	-2	-4	-5	-9	-14	-44	-10	-16	-44		
38H	-3	-5	-9	-15	-26	-32	-16	-27	-33		

Table 38.6: Summary of CEHZ distances for cliff cells mapped using cliff projection method

