Appendices

Appendix 1: Habitat Assessment Field Data Sheet and Key

Site Name:					Site ID:			
Date:				Time (NZST):				
Sampler(s):			Weather:				-	
Date of last sign, rain	nfall:			Photo No	(s):			
Water Quality				Water O				
METER		1		Normal/n	one			
TEMP (oC)				Petroleun	n			
DO (mg/l)				Anaerobi	С			
DO (%SAT)				Sewage				
COND (uS)				Chemical				
SECCHI (m)					rface oils			
Pfankuch Stability I	ndex			Anerobic	sedimen	t odour (H	I ₂ S)	
Upper Bank		Lower ba	ınk		Bottom			
Landform		Capacity			Rock ang			1
Mass wasting		Bank rock			Brightnes			
Debris Jam		Obstruction	on		Consolid.			-
Vegetation		Cutting			% Stable			-
Riparian Vegetation		Depositio			Scouring Aquatic v	000		1
Predominant surrou		nd use		Litter pre		ege		, _
Native forest						ock acces	s	
Native scrub	H			Left bank				
Planted forest	Н			Right ban	k			
ifestyle	\vdash			Channel		961		
Horticulture	Н						/9/1	
Pasture	Н		Davinbuta		ous aigae	coverage		Abundant
	Н		Periphyto	n		Rare	Common	Abundani
Jrban Qualatative Habitat	<u> </u>		Diatom			_	_	_
. Aquatic hab abund			Mat algae Filamento					_
2. Aquatic hab diversi			Bryophyte		verworts)			
. Hydrologic heterog			Біјорпјю	Macrophy		Rare	Common	Abundant
. Channel Alteration								
. Bank stability					Note:	Rare = <1	0% cover	
. Channel Shade						Common	= 10-50%	cover
. Riparian vege						Abundant	= >50% o	over
Comments: fish observed fish habitat barriers to fish passage evidence of stable pools catchment erosion seaps or springs discharges or outfalls evidence of grazing stock as unique features crossings / tracks litter, shopping trollies, batte descriptions of sediment stock / ferall grazing high water marks								

L	Riparian	zone (L)	Bank (True Left)	Aqua	tic Sub	strate	Bank (True Right)	Riparian	zone (R
g	5-20m	0-5m	(Mde Leil)	THE REAL PROPERTY.	Inorganic		(indertogray	0-5m	5-20m
e n	Ca	пору	Stability		Organic		Stability	Car	юру
d	Unde	erstory	Bank Type	Wetted width (m)	Max depth	Flow type	Bank Type	Unde	rstory
0			1 10 100				2018年19月		
				,					
1						-			
									11190
2		(0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1						10000000000000000000000000000000000000	11000
3		TANKAR I			\vdash				
•					Н				
4							医排除性		A STATE OF
5									
							STATE OF THE PARTY		
6					\vdash			E 198 18 144	
_									
7									
В					-				
					H				
9					\Box				
0									200

REACH INVENTORY AND CHANNEL STABILITY EVALUATION FORM

Dute:

Observer:

Conservancy:

Rivers

Reach location:

Length represented by reach:

UPFER BANKS	EXCELLENT		GOOD		FAIR		POOR	
Landform slope	bank gradient <30° oa both banks	2	bank gradient 30- 35" on 1 or some- times both banks	4	bank gradient >35° -50° common on 1 or both banks	6	bank gradicat > 50° common on 1 or both banks	8
Mass wasting (existing or potential)	no evidence of past or any potential for future mass wasting into channel	3	Infrequent &/or very small. Mostly healed over. Low future potential	6	moderate frequency and size, with some raw spots cooled by water during high flow	,	frequent or large, causing sediment nearly year-long or imminent danger of this	12
Debris jam potential (Costable objects)	essentially absent from immediate channel area	2	present but mostly small twigs and limbs	4	present, volume and size both increasing	6	moderate to beavy amounts, predominantly larger sizes	1.
Vegetative bank protection	>90% plant density. Vigour & variety suggest a deep, dense, soil-binding root mass	3	70.90% density. Fewer plant species or lower vigour suggests a less dense or deep root mass	6	50-70% density. Lower vigour and still fewer species form a somewhat shallow and discontinuous root mass	9	<50% density plus fewer species and less vigour indicate poor, dis- continuous and shallow root mass.	12
Sub-total						_		_
LOWER BANKS	EXCELLENT		G00D		FAIR		POOR	
Channel capacity	ample for present & some increases. Peak flows contained. Width to depth ratio <7	1	adequate. Overbank flows rare, Width to depth ratio 8-15	2	basely costains present peaks. Occasional over- bask floods. Width to depth ratio 15-25	3	inadequate. Over-bank flows common. Width to depth ratio >25	•
Bank rock content	>65% rocks with large angular boulders >30 cm numerous	2	40-65% auck, mostly small boulders to cobbles 15 to 30 cm	4	20-10%, with most in the 8 to 15 cm diameter class, although larger once may be present	6	<20% rock fragments of gravel sizes, 2.5 to 8 cm or less	8
Obstructions/ flow deflectors/ sediment traps	seeks & old logs firmly embedded. Flow pattern without cutting or deposition. Pools and riffles stable	2	some present causing crosive cross currents & minor pool filling. Obstractions and dellectors newer and less firm	4	moderately frequent, moderately unstable obstructions & deflectors move with high water causing bank; curing and filling in of pools	6	frequent observations & deflectors cause bank erosion year-long. Sediment traps full, channel migration occurring	
Cutting	little or none evident. Infrequent raw banks less that 15 em high generally	4	some, intermittently at outcurves and constitutions. Raw banks may be up to 30 cm high	8	significant, Cuts 30-60 cm high. Root mat overhangs and sloughing evident	12	almost contin- uous cets, some over 60 cm high. Failure of over- hangs frequent	,

Deposition	listle or no enlargement of channel or point burn	4	some new increase in bar formation, mostly from coarse gravels	5	moderate deposition of new gravel & course sand on old and some new bars	12	extensive deposits of predominantly fine particles. Accelerated bar development	16
Seb-soul								12
воттом	EXCELLENT		G00D		FAIR		POOR	- 150
Rock angularity	sharp edges & corners, plane surfaces roughened	1	sounded corners & edges, surfaces smooth & flat	2	corners & edges well rounded in 2 dimensions	3	well rounded in all dimensions, nurfaces smooth	4
Brightness	surface dull, dark- eard or stained by algae or minerals. Bright surfaces <5% of area	1	mostly dull, but may have up to 35% bright surfaces, some on larger rocks	2	mixture, 50-50% dull & bright, ±15% (i.e. 35-65%)	3	predominantly bright, >65% exposed or scoured surfaces	4
Consolidation or particle packing of substrate	assorted sizes tightly packed &/or overlapping	2	moderately packed with some overlapping	4,	mostly a loose assortment with no apparent overlap	•	no parking evident, loose assortment, easily moved	
% stable materials	Stable materials 80- 100%	4	Stable materials 50- 80%	8	Stable materials 20- 50%	12	Stable materials 0-20%	1
Scouring & deposition	<5% of the channel length affected by scouring & deposition	6	5-30% affected. Scour at constrictions & where grade steepens. Some deposition in pools & backwaters	12	30-50% affected. Deposits & scour at obstructions, constrictions & bends. Some filling of pools	18	>50% of the bottom in a state of flux or change nearly year-long	2
Clinging aquatic vegetation (mosses & algae)	abundant. Growth largely moss-like. dark green, year- round. In swift water too	1	common. Algal forms in low velocity and pool areas. Moss here too and swifter waters	2	present but spotty, mostly in backwater areas. Seasonal blooms make rocks slick	3	perennial types scarce or absent. Yellow-green, abort term bloom may be present	
Seb-toul				_				
	TOTAL	STAI	OILITY SCORE =	sub-to	nals) * *	_		
Substrate Con	nposition: Bedrock		•		Boulder	s (>26	em diameter) =_	_
	Large cob	bles (I	3-26 cm)		Small o	obbles ((6-12 cm) =_	_
	Gravel (0.	2-6 en	ı) - <u>·</u>		Sand (0.2 em		
	Silt	*	•					
Riparian Veg	etation Composition:	True	left bank	True	right bank	Ave	rage	
Native	forcat	_		_	_	_	_	

Quan	leative	Habitat	Assessment
Contac			

Site:	
Date:	-

Habitat Parameter		Condition	on Category	
	Optimal	Suboptimal	Marginal	Poor
Aquatic Habitat Abundance	> 50% of channel favourable for opilizural colonisation and fish cover; includes woody debris, undercut banks, root mats, rooted aguatic vegetation, cobble or other stable habitat. Also includes macrophyte dominated streams.		10-30% of channel contains stable habitat.	< 10% of channel contains stable habitat. Note: Algae does not constitute stable habitat.
	20 19 18 17 16	16 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Aquatic Habitat Diversity	Wide variety of stable aquatic habitat types present including: woody debris, riffles, undercut banks, root mats, rooted aquatic vogetation, cobble or other stable habitat.	Moderate variety of habitat types; 3-4 habitats present including woody debris.	Habitat diversity limited to 1-2 types; woody debris rare or may be smothered by sodiment.	Stable habitats lacking or limited to macrophytes (a few macrophytes species scores lower than several).
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Hydrologic Heterogeneity	Mixture of hydrologic conditions i.e. pool, riffle, run, chute, waterfalls; variety of pool sizes and depths.	Moderate variety of hydrologic conditions; deep and shallow pools present (pool size relative to size of stream).	Limited variety of hydrologic conditions; deep pools absent (pool size relative to size of stream).	Uniform hydrologic conditions; uniform depth and velocity; pools absent (includes uniformly deep streams).
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
4. Channel Alteration	Natural channel and meander pattern; no evidence of historic channel alteration e.g., designing, channelisation stabilisation, or other human activity.	Natural channel, Minimal channel alteration. Channel shape and form may be influenced by recent sediment deposition.	Channelised. Channel form and shape unconstrained. Channel made of natural materials.	Channelised. Channel form and shape constrained by man-made materials (e.g. culverts, gabions, concrete).
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
5, Bank Stability (water level to bank full channel)	Stable: <5% bank effected; evidence of erosion or bank failure absent; minimal potential for future problems.	Moderately stable: 5-30% affected; areas of erosion mostly healed over; some potential for future problems.	Moderately unstable: 30-60% affected; high erosion potential during floods.	Unstable: 60-100% affected; eroded areas along runs and bends; bank sloughing and erosion scars common.
oft bank	10 9	8 7 6	5 4 3	2 1 0
Right bank	10 9	8 7 6	5 4 3	2 1 0
8. Channel Shade	Full canopy.	60 - 80% of water surface shaded; mostly shaded with open patches.	20 - 60% of water surface shaded; mostly open with shaded patches.	<20% of water surface shaded. Fully open; lack of canopy cover.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
r. Riparian Aggetation Integrity within 20 Insters)	last 30 years; mature native tree canopy and intact native understory	Minimal human activity; mature native tree canopy or native scrub; understory shows some impact (e.g. weeds, feral animal grazing).	Extensive human activity affecting canopy and understory; trees exotic (pine, willow, poplar); understory native or exotic.	
oft bank	10 9	8 7 6	5 4 3	2 1 0
OTH ENGLISH				

Field sheet missed Sept. 2002

Key for field measurements

Aquatic Substrate

Code	Inorganic	Size class
BR	Bedrock	1277 12 12000
BO *	Boulder	>256mm
co	Cobble	64-256mm
GR	Gravel	2-64mm
SS	Silt/sand/soft clay	2-0.004mm
HC	Hard packed clay	
MM	Artificial / man-made	

Code	Organic
D	Detritus (including twigs & leaves)
В	Bryophytes
М	Macrophytes
Α	Algae (filaments, mats & diatoms)
W	Woody debris (>2.5cm diameter)
R	Tree roots
N	None

Bank Type

Code	Туре
E	Earth
R	Rock
MX	Mixed earth & rock
MM	Man-made (concrete, gabions, timber)

Bank Stability

Code	Bank stability
S	Stable
U	Unstable

Flow Type

Code	Type
P	Pool (no detectable flow)
R	Riffle (turbulent flow)
RN	Run (laminar flow)
CW	Chute / waterfall

Riparian Zone

Code	Name	Dominant Canopy Vegetation
MN	Mature Native	Mature native trees (>30 years old).
YN	Young Native	Young native trees (<30 years old).
ET	Exotic Treeland	Exotic trees; commonly willow or poplar.
EP	Exotic Plantation	Plantation forest, principally pine.
N	None	No canopy.

Code	Dominant Understory Vegetation
DN	Dense Native
TN	Thin Native
DE	Dense Exotic
TE	Thin Exotic
N	None

Dense vegetation - difficult to walk through.

Thin vegetation - easy to walk through.

Aquatic Substrate

Code	Inorganic	Size class
BR	Bedrock	
во	Boulder	>256mm
CO	Cobble	64-256mm
GR	Gravel	2-64mm
SS	Silt/sand/soft clay	2-0.004mm
HC	Hard packed clay	
MM	Artificial / man-made	

Code	Organic	
D	Detritus (including twigs & leaves)	
В	Bryophytes	
M	Macrophytes	
A	Algae (filaments, mats & diatoms)	
W	Woody debris (>2.5cm diameter)	
R	Tree roots	
N	None	

Bank Type

Code	Type
E	Earth
R	Rock
MX	Mixed earth & rock
MM	Man-made (concrete, gabions, timber)

Bank Stability

Code	Bank stability
S	Stable
U	Unstable

Flow Type

Code	Type
P	Pool (no detectable flow)
R	Riffle (turbulent flow)
RN	Run (laminar flow)
CW	Chute / waterfall

Riparian Zone

Code	Name	Dominant Canopy Vegetation
MN	Mature Native	Mature native trees (>30 years old).
YN	Young Native	Young native trees (<30 years old).
ET	Exotic Treeland	Exotic trees; commonly willow or poplar.
EP	Exotic Plantation	Plantation forest, principally pine.
N .	None	No canopy.

Code	<u>Dominant</u> Understory
DN	Vegetation Dense Native
TN	Thin Native
DE	Dense Exotic
TE	Thin Exotic
N	None

Dense vegetation - difficult to walk through. Thin vegetation - easy to walk through.