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  Disclaimer: Users are reminded that Northland Regional Council data is provided in good faith and is valid at the date 
of publication. However, data may change as additional information becomes available. For this reason, information 
provided here is intended for short-term use only. Users are advised to check figures are still valid for future projects 
and should carefully consider the accuracy/quality of information provided before using it for decisions that concern 
personal or public safety. Similar caution should be applied for the conduct of business that involves monetary or 
operational consequences. The Northland Regional Council, its employees and external suppliers of data, while 
providing this information in good faith, accept no responsibility for any loss, damage, injury in value to any person, 
service or otherwise resulting from its use. All data provided is in NZ Standard Time. During daylight saving, data is one 
hour behind NZ Daylight Time.  
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Executive summary 
Mai I ngā maunga ki ngā moana 

Mai I uta ki tai 
Ahakoa ki hea i te taiao 

He kirihou, He kirihou, He kirihou!1 

From the mountains to the oceans 
From the land to the sea 

Everywhere in the environment 
Plastic can be found! 

 
Plastic is one of the modern world’s most revolutionary materials, but its durability has also sowed the seeds of a 
major environmental concern. Today, plastics are omnipresent in the sea and on land, and pose threats to plants, 
animals and humans. There has been much scientific and public attention on this problem in recent years, here 
and overseas, but the issue is only growing. To tackle plastic pollution, we must approach it from all angles – this 
includes examining its sources, pathways and effects. 
 
This report provides the first insights into plastic pollution in Te Taitokerau (Northland). It summarises available 
empirical data on macroplastics and microplastics in ecosystems and organisms, as well as the sources of plastic 
and the pathways it travels.  
 
We hope that by quantifying plastic pollution across the region, this report will help to: a) address knowledge 
gaps, b) inform policy development, c) better develop scale-appropriate solutions, and d) raise awareness and 
inspire change to reduce and mitigate plastics in the environment. This report can be used as a tool and a baseline 
for ongoing environmental monitoring and reporting. 
 
Ultimately, we can only solve such a large problem on a large scale. Te Taitokerau, and indeed Aotearoa (New 
Zealand), needs a system-wide change in plastic use and disposal across all aspects of society to solve the issue of 
plastic pollution. It’s critical that we act now to preserve our unique natural environment for future generations.  

 

  

 
1 PMCSA, Office of the Prime Minister’s Chief Science Advisor (2019).  
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1.0 Introduction 

1.1 Plastic 
Plastics are synthetic, water-insoluble polymers that are mainly made from petrochemical sources. 
They’re categorised into seven groups, including polyethylene (PE), polypropylene (PP) and 
polyethylene terephthalate (PET) (Auta et al., 2017; Appendix 1). Their uniqueness lies in properties 
such as their versatility, lightweight nature, moldability, transparency, and heat and water resistance 
(Andrady & Neal, 2009; Frias & Nash, 2019). Their durability, utility and affordability have fuelled a 
significant increase in production worldwide, from 1.5 million metric tons (Mt) in 1950 to 390.7Mt in 
2021 (Geyer et al., 2017; Statista, 2023).  
 
Plastics are ubiquitous in daily life, particularly via packaging materials made mostly from PE, PET and 
PP (Geyer et al., 2017). They are integral to the global economy across various sectors (OECD, 2022). 
Future projections estimate global plastic use to triple by 2060, reaching 1,231Mt, driven by 
population and economic growth – this will use up 20% of global oil production and impact 15% of 
the carbon budget (Wayman & Niemann, 2021; OECD, 2022; Ellen MacArthur Foundation, 2016). 

1.2 Plastic waste 
Over time, plastics have become a global environmental issue, made worse by excessive 

consumption (Andrady, 2011) and a ‘throw-away’ culture (Frias & Nash, 2019). In 2015, for example, 

2,600Mt of plastics were in use and 70% of the 302Mt discarded as waste ended up in landfills, while 

the rest was incinerated (Fig. 1; Greyer et al., 2017). Furthermore, between 1950 and 2015, only 9% 

of plastic waste was recycled (Greyer et al., 2017). By 2050, it is estimated approximately 12,000Mt 

of plastic waste will be in landfills or in the environment (Andrady & Neal, 2009; Greyer et al., 2017).  

1.3 Plastic litter 
Given current levels of production and the quantities of plastic that are already present in the 

environment, it’s inevitable that this abundance of plastics will keep increasing in the foreseeable 

future (Barnes et al., 2009). What’s more, it’s considered that due to their durability, all plastics ever 

introduced into the environment remain there today, either as whole items or as fragments 

(Thompson et al. 2005).  

 

Rather than decomposing into molecular or further biodegradable compounds, plastic debris 

fragments into smaller pieces, which spans at least six orders of magnitude in size, from nanometres 

to metres. These plastic fragments are often referred to as macroplastics (>5mm) and microplastics 

(<5mm; Table 1). With the increasing attention given to microplastics, researchers have now begun 

to consider the fragmentation of macroplastics and microplastics down to even smaller sizes, known 

as nanoplastics (Table 1).  
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Figure 1: Global plastic production, use and disposal in 2015. (Source: NZ Royal Society, 2019, based on data from Geyer et 
al., 2017) 

 
Table 1: Classification of plastic litter based on item sizes 

  Definition Reference(s) 

Macro- Plastic debris with regular or irregular shape and with a size of >5mm. Moore (2008) 

Meso- 
Macro- 
Mega- 

Macroplastics can also be divided into several categories: 

• meso: between 5mm and 2.5cm 

• macro: between 2.5cm and 1m 

• mega: >1m. 

Lippiatt et al. (2013) 

Micro- 

Any plastic particle with regular or irregular shape and with size ranging between 
1μm (1 micron) and 5mm. 
There is no definition that accurately encompasses all criteria to describe what a 
microplastic is. Several size classes have been recommended: 1 ≤ 100μm; 100 ≤ 
350μm; and 350μm to ≤5mm. Several categories are also defined to help identify 
the source, including fragment, fibre, fibre bundle film, pellets, sphere (or bead) 
and foam.  

Frias & Nash (2019) 
 

Rochman et al. 
(2019) 

Nano- 
Any plastic particle with an upper size limit of 1μm or 100nm, depending on the 
authors. 

Cole et al. (2015) 
Koelmans et al. 

(2015) 
Lippiatt et al. (2013) 

 

Lippiatt et al. (2013) 
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1.4 Plastic sources and pathways 
One of the major challenges in addressing the global issue of plastic pollution is that its sources and 

transport pathways are many and widespread, and include land, water, and air (Barnes et al., 2009; 

Royal Society, 2019; Geyer, 2020; Fig. 2). Identifying pollution sources is key to understanding how 

plastics travel from land to aquatic environments, and ultimately the open oceans (Su et al., 2020). 

1.4.1 Land 

One of the primary pathways for plastic pollution entering the environment is through a range 

of land-based activities and practices (Windsor et al., 2019). Plastics can enter the environment 

at any stage of product manufacturing, use and disposal (Derraik, 2002).  

 
The three main human activities linked to this issue can be identified as: 

a) inadequate waste management, and residues generated by any type of activity that can 

lead to the accidental release of plastics in the environment 

b) intentional littering or disposal of waste (domestic, commercial and industrial) 

c) unintentional littering. (Royal Society, 2019) 
 
Mismanaged waste (either littered, intentionally or not, or inadequately disposed of) can often 

find its way into drainage and stormwater systems (Armitage & Roosebom, 2000; Clunies-Ross, 

2019). This phenomenon can be exacerbated by wind and rain or surface-runoff water (MfE & 

Stats NZ, 2019). 

 
Other important sources of plastic pollution on land include the following: 

• agriculture waste and runoff 

• industrial spillage 

• domestic activities (personal-care products with microbeads, plastic-based textiles worn 

away during laundry) 

• sludge from wastewater treatment plants. (Zubris & Richards, 2005; Siegfried et al., 2017; 

Windsor et al., 2019; Behrens et al., 2021) 

 
Annually, it is estimated that the amount of plastic released to the terrestrial environment is 4–

23-times greater than that released to the marine environment (Horton et al., 2017). 

Microplastics may then stay in the soil, or wash into rivers and streams when it rains (Horton et 

al., 2017; Koelmans et al., 2017; Xu et al., 2020).  

1.4.2 Freshwater 

Another significant pathway for plastic pollution is through water sources, both freshwater 

(rivers and lakes) and marine. Collectively, river systems, stormwater runoff (Siegfried et al., 

2017; Shahul Hamid et al., 2018; Windsor et al., 2019), and wastewater treatment plant 

discharges (Carr et al., 2016; Dris et al., 2017; Siegfried et al., 2017) are significant sources of 

plastic pollution, serving as pathways between terrestrial and marine environments (Fig. 2).  
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Figure 2: Multiple sources of plastic pollution and pathways into the marine environment. (Source: Royal Society, 2019) 

1.4.3 Marine 

Annually, an estimated 4.8 and 12.7 million tons of plastic enter the marine environment 

(Jambeck et al., 2015) directly and indirectly from multiple pathways.  Under a business-as-

usual scenario and in the absence of any interventions, the volume of plastic waste entering 

aquatic ecosystems annually could double by 2030 (Borrelle et al., 2020) and nearly triple by 

2040 (UNEP, 2021). 

 

Maritime activities are also a direct source of plastic pollution and include (Macfadyen et al., 

2009; Kershaw & Rochman, 2015; Li et al., 2016; Walker et al., 2019): 

• aquaculture 

• recreational and commercial fishing 

• shipping and offshore operations 

• ship-based tourism 

• structures. 
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Once plastic has entered the marine environment, it is influenced by tides, currents, waves and 
winds. It accumulates in coastal areas (Galgani et al., 2015) and can travel long distances to 
collect in subtropical gyres (van Sebille et al., 2015). Extreme weather events such as floods, 
storms and tsunamis transport debris from coasts, riverbanks, estuaries and damaged 
structures into the oceans (Kershaw et al., 2019). 

1.5 Effects and threats of plastic pollution 
Plastic contamination extends to various ecosystems, including estuarine areas, coastal regions, 

Antarctic environments, and even the deepest parts of the Mariana Trench (Chiba et al., 2018; Díaz-

Mendoza et al., 2020; Kelly et al., 2020; Lacerda et al., 2019). Unsurprisingly, the number of 

potentially harmful implications of plastics have escalated over time, including aesthetic issues, 

hazards, biosecurity risks, and effects on organisms, including humans.  

1.5.1 Aesthetics and hazards 

Litter is visually and aesthetically unattractive and can spoil public amenities, which in turn can 

have economic impacts by decreasing tourism (e.g. Phillips & House, 2009; Brouwer et al., 

2017). While clean-up operations are one of the solutions to reduce litter, they incur 

significant costs for local authorities (e.g. Armitage & Rooseboom, 2000; McIlgorm et al., 

2011). In addition to becoming an eyesore, plastics also represent a potential hazard and risk 

of personal injury to humans (Armitage & Rooseboom, 2000; Phillips & House, 2009; Campbell 

et al., 2016). 

1.5.2 Biosecurity risks and invasive species 

Floating plastic debris, acting as rafts, poses biosecurity risks by aiding the long-distance 

colonisation of non-indigenous species (Pace et al., 2007; Maximenko et al., 2015; Casabianca 

et al. 2019; Audrézet et al., 2021). Microplastics may also transport pathogenic microbes 

through wastewater treatments, enabling the dispersal of resistant microbes into the 

environment via treated effluent (Eckert et al., 2018). Recognising these biosecurity 

implications is vital for comprehending, monitoring and ultimately mitigating the effects of 

global-scale plastic pollution (Audrézet et al., 2021). 

1.5.3 Effects on organisms 

Plastic pollution is globally recognised as a major environmental threat to aquatic and 

terrestrial wildlife, and increasingly attracting worldwide attention (Gall & Thompson, 2015; 

Wagner & Lambert, 2018; Blettler & Wantzen, 2019; Huang et al., 2021). There are various 

pathways (both direct and indirect) for plastics to affect organisms depending on their size, via 

ingestion, entanglement, inhalation, and skin contact or skin absorption (e.g. Laist, 1997; Gall 

& Thompson, 2015; Kim et al., 2018; Kühn & van Franeker, 2020; Fig. 3). 
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Figure 3: How different sizes of plastic affect marine life, either directly by entanglement or ingestion (thick arrows) or 
indirectly via food sources that have ingested it (thin arrows). (Source: Worm et al., 2017) 

1.5.4 Potential health effects in humans 

Like other organisms in the food web, humans are exposed to microplastics primarily via 

ingestion, as well as inhalation and skin contact. Evidence of plastic contamination in the 

human food chain is increasing. Microplastics have been detected in: 

• beverages, including beer and wine (Shruti et al, 2020; Diaz-Basantes et al., 2022) 

• tap or drinking water (Zhang et al., 2020) 

• fruits and vegetables (Conti et al., 2020)  

• seafood (Huang et al., 2021; Diaz-Basantes et al., 2022; Gündoǧdu & Köşker, 2023). 

 

Seafood is considered the primary vector of microplastic pollution in humans (Barboza et al., 

2018, although refer to Mohamed Nor et al., 2021), which could put indigenous communities 

at a higher risk due to a greater consumption of shellfish (Gismondi & Sherman, 1996).  
 

Exposure to microplastics is raising concerns around potential human health issues, especially 

through eating foods contaminated with microplastics, known as trophic transfer (Barboza et 

al., 2018; Huang et al., 2021; Meaza et al.,2021). Microplastics could, for example, trigger 

inflammation, stress, immune dysfunctions, chromosomal modification, and other adverse 

medical conditions in humans, depending on exposure and susceptibility (refer to Campanale 

et al., 2020; Prata et al., 2020a; Danopoulos et al., 2022 for reviews). 

1.6 Northland monitoring studies 
As concern increases over the presence and persistence of plastic pollution in the environment, there 

are growing efforts to develop a better understanding of plastic pollution and reduce the amount of 

litter entering the environment (Office of the Prime Minister’s Chief Science Advisor, 2019). Such 

efforts include the monitoring of litter and plastics in various ecosystems (including community litter 

clean-up events and citizen-science projects), and the assessment of their effects in organisms. 

 

Northland Regional Council, iwi, hapū and non-government organisations have worked together to 

better understand the extent of this issue in Northland and fill any knowledge and data gaps.  
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1.6.1 Macroplastic pollution 

Clean-up surveys are often used to better understand the scope and current nature of the 

problem of litter (e.g. Jang et al., 2018), because sites can be easy to access and often do not 

require specialised equipment (Kershaw et al., 2019). Below is a list of the main projects that 

deal with macroplastics in Te Taitokerau. 

Litter Intelligence 

Litter Intelligence was developed in 2018 through collaboration with Sustainable Coastlines, 

Statistics New Zealand (Stats NZ), the Department of Conservation (DOC), and Ministry for 

the Environment (MfE) funding, facilitating community data collection and anti-litter 

initiatives. This platform offers scientifically rigorous litter data, meeting Stats NZ’s Tier 1 

requirements, from numerous survey sites nationwide. It aligns with United Nations 

Environment Programme (UNEP) and Intergovernmental Oceanographic Commission (IOC) 

Guidelines on Survey and Monitoring of Marine Litter (Cheshire et al., 2009), and makes 

data publicly accessible online. 

 

Northland Regional Council (NRC) adopted Litter Intelligence in 2019. Quarterly surveys are 

conducted at two sites along the Hātea River and Whangārei Harbour (Fig. 4), with an 

additional 16 popular recreational beaches across Northland monitored during the 

summer. The surveys are supported by the community, and 34 sites have been collectively 

monitored since 2019 (Litter Intelligence, unpublished data). Between 2019 and 2022, 96 

beach surveys were conducted across the region (Appendix 3A). 

 

 
Figure 4: Official Northland Regional Council Litter Intelligence survey sites along the Hātea River (top) and at 
Onerahi (bottom). (Photos: Bamford, N.) 
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Te Tai Tokerau Debris Monitoring Project (TTTDMP) 

TTTDMP, initiated in 2019 by NRC and Maunga to Moana (M2M) Consulting, involves 

citizens in collecting litter data. It aligns with Litter Intelligence and UNEP/IOC guidelines 

(Cheshire et al., 2009). It uses the Marine Debris Tracker (MDT) app (NOAA, University of 

Georgia, USA) to record GPS locations of litter items. The project encourages data 

collection, promotes environmental awareness, and offers flexible methodologies. Some 

data are publicly accessible. The principal investigator also conducts surveys on marine 

litter and various items in the region (Martinez & Bamford, 2021; Martinez, 2022, 2023). In 

2019–2020, TTTDMP conducted 249 surveys at 138 sites using the MDT app.  

Stormwater study 

To estimate how much plastic and litter is reaching our rivers and estuaries each year, NRC 

collaborated with NorthTec, Whitebait Connection, Whangarei District Council, Far North 

District Council, Kaipara District Council and Northland District Health Board to install 

LittaTraps throughout the region. LittaTraps are inserted into stormwater catch-pits and 

can capture plastic and litter before they enter the stormwater system. 

 

NRC collaborated with M2M Consulting, examining urban stormwater in Whangārei and 

five other Northland towns (Martinez & Griffiths, 2023). Supported by various stakeholders, 

51 LittaTraps were installed at 16 different land-use types. Quarterly audits from March to 

December 2021 quantified litter content, identified high-risk land uses, and estimated the 

annual plastic and litter load discharged into aquatic environments. Data categories align 

with Litter Intelligence, and results are in their database. In 2022, Northland Regional 

Council committed to continue monitoring 10 of the original 51 sites (Martinez & Griffiths, 

2023).  

Keep New Zealand Beautiful 

Keep New Zealand Beautiful (KNZB), established in 1967, aims to inspire, educate and 

empower Kiwis to be tidy through various programmes, including Upstream Battle and 

Backyard Battle (KNZB, 2023a). In 2019, supported by the New Zealand Government, KNZB 

initiated a National Litter Audit, collecting data on land-based litter at 413 sites nationwide 

(16 in Te Taitokerau). Sites were chosen through stratified random sampling to represent 

diverse environments. As with Litter Intelligence, the audit was developed with input from 

Stats NZ, DOC and MfE (KNZB, 2021). The audit was repeated in 2022 to track changes over 

three years (KNZB, 2023b). This report combines cigarette-butt data with plastic data for 

consistency (Cheshire et al., 2009). 

1.6.2 Microplastic pollution 

Over the past few years, NRC has initiated and collaborated on several projects relating to 

microplastic pollution in Te Taitokerau. 

Microplastics in sediments 

Northland Regional Council collaborated with iwi, hapū and SCION to assess microplastic 

distribution in beach sediments and across Te Taitokerau, creating baseline data for 

coastline and freshwater sites (De Lena et al., 2021). Part of the Aotearoa Impacts and 

Mitigation of Microplastics (AIM2) initiative is to understand microplastic distribution across 

Aotearoa environments, identify associated risks to ecosystems, people and animals, and 

propose solutions, including outreach and education. 

 
NRC collected sand sediment samples from 11 diverse sites, including open coastal, dune 

lake and estuary locations, between November 2019 and February 2020. These sites were 

https://tttdmp-northtec.hub.arcgis.com/
https://www.linkedin.com/in/manue-martinez-99604a65/?originalSubdomain=nz
https://debristracker.org/data
https://www.scionresearch.com/
https://www.esr.cri.nz/expertise/water-environment/microplastics/
https://www.esr.cri.nz/expertise/water-environment/microplastics/
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chosen based on geographic factors and recreational use, and samples analysed by SCION. 

The project received support from multiple iwi and hapū groups.  

Microplastics in freshwater 

Rivers and effluent are major terrestrial sources of microplastics (Horton et al., 2017). 

However, freshwater microplastics studies are limited, with fragmented data and lacking 

standardised protocols (Lambert & Wagner, 2018; Horton et al., 2017). The project GlobAl 

LAke miCroplasTICs (GALACTIC) was initiated in 2019 to fill this gap, studying microplastics 

in 38 lakes across 22 countries, including Aotearoa. It provides the first-ever data on 

microplastics in Aotearoa’s freshwater systems. NRC collaborated with NIWA (National 

Institute of Water and Atmospheric Research) as part of GALACTIC to collect samples from 

Lake Taharoa, a rare Northland dune-lake ecosystem (NIWA, 2023). This effort was 

supported by the Taharoa Domain Governance Committee.  

Microplastics in seawater 

Blue Cradle and researchers from six Aotearoa institutions collaborated to assess 

microplastic pollution in Aotearoa marine, freshwater and terrestrial environments, 

investigate impacts on ecosystems and industries, and explore mitigation strategies. Part of 

the AIM2 project, funded by the Ministry of Business, Innovation and Employment 

Endeavour Research Programmes Fund, this initiative conducted a June 2021 expedition in 

the Hauraki Gulf and along Te Taitokerau's east coast. Seven sites were studied with two 

manta net trawls at each, primarily in the Bay of Islands and Whangārei Harbour. NRC 

advised on trawl locations based on the microplastic sediment study and populated areas, 

and the Institute of Environmental Science and Research (ESR) conducted the analysis. 

Microplastics in shellfish 

Under the AIM2 project, NRC collected shellfish samples in 2020 to ascertain: a) if 

microplastics were present and at what concentration, b) what polymer types were 

present, and c) the morphotype (shape) and colour of observed microplastics. Three 

species – pipis (P. australis), cockles (A. stutchburyi) and wedgeshells (M. Liliana) – from 

three locations within the region were selected. A total of 15–20 individuals per site were 

sent to ESR for analysis. This project was supported by local hapū and iwi.  

1.7 Purpose of this report 
Plastic pollution (including microplastics) are in freshwater, seawater, air, soil, sediments, organisms 
and parts of the human diet. This raises broad concerns about the effects of microplastics and 
plastics in complex global ecosystems (Trembley et al., 2020). To address the issue of plastic pollution 
and implement relevant management actions and policies, it is important to know the extent of this 
issue and address knowledge gaps at national and, where possible, local levels.  
 
This report is the first comprehensive summary of the status of plastic prevalence in Te Taitokerau, 
and the key pathways for plastic to enter the environment. The report also aims to: 
– serve as a baseline reference for future projects and research 
– identify knowledge gaps 
– help better understand the status of plastic pollution in the region 
– support policy development to address this ongoing issue in Te Taitokerau and across Aotearoa. 
 
While this report doesn't delve into the management of plastic pollution at local, regional or national 
levels, it compiles data for future assessment of plastic pollution trends and mitigation effectiveness.  

  

https://niwa.co.nz/
https://bluecradle.org/2021-microplastics-marine-biosecurity-expeditions/
https://www.esr.cri.nz/
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2.0 Macro litter findings 

2.1 Illegal dumping, littering, and clean-up events 
 

Macro litter refers to all categories of litter, larger than 5 mm in size.  enough to be seen and picked 

up. Although it is challenging to determine whether all waste during clean-ups was illegally dumped 

or littered, approximately 8.5 metric tonnes and 527.7 m3 of litter were removed from the 

environment annually thanks to clean-up events (Table 2). 

Table 2: Estimated annual amount of litter collected by clean-up projects led by some of the charity trusts in Te Taitokerau. 
Note: Not Available (NA). Volumes were not converted to weight due to the mixed nature of the litter (e.g. plastics mixed 
with glass, etc.). (Sources: For Our Real Clean Environment Trust, Ocean Spirit Trust, Sea Cleaners Trust) 

Location Charity 
Waste collected 

(kg/year) 
Waste collected 

(m3/year) 
Time period 

Te Taitokerau  Sea Cleaners NA 527.7 Aug–Nov 2022 

Te Taitokerau  Litter Intelligence 127.70 NA 2019–2022 

Whangārei district F.O.R.C.E. 8,430 NA 2019–2022 

Tutukaka Harbour* Ocean Spirit 3.90 NA Mid 2020–2022 

 Total 8,561.60 527.7  
* SeaBin installed in the harbour 

 
The records presented here are, however, an underestimation of the total volume and/or weight of 

rubbish illegally dumped in the region. This is because: a) not all illegal dumping is reported and dealt 

with by councils, b) not all councils collect roadside litter, c) if rubbish is collected by councils, the 

data measuring it are not always recorded, and d) there are many more community-led clean-up 

events for which there are no data, or data are not publicly available. Furthermore, no data on the 

categories of waste collected are recorded. As a result, the extent of plastic pollution associated with 

illegal dumping in Te Taitokerau’s environment is unknown. 
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2.2 Shoreline surveys 
2.2.1 Plastic composition  

Overall, 12,397 plastic and foamed plastic litter items were collected at NRC’s two official Litter 

Intelligence survey areas (Hātea and Onerahi, Fig. 4) over 30 surveys between 2019 -2023. 

Plastic items accounted for 68%, while foamed plastic represented 32%, at these sites (Fig. 5).  

  

Figure 5: Percentage breakdown of plastic and foamed plastic items (left); total item count and weight (right). Taken 
over 30 survey events between 2019 and 2023. (Source: Litter Intelligence, insights) 

Plastic and foamed plastic items (by percentage) varied between Litter Intelligence surveys 

across Aotearoa compared to those in Te Taitokerau. For Aotearoa, plastic was 69% and 

foamed plastic 8%. In Te Taitokerau, plastic was 59% and foamed plastic 21% (Fig. 6). These 

results were consistent with other surveys conducted in Te Taitokerau, with plastics ranging 

from 74% (TTTDMP, unpublished data) to 85% (Van Gool, 2021).  

  

Figure 6: Comparison of plastic and foamed plastic (percentage) collected under the Litter Intelligence programme 
across Aotearoa and in Te Taitokerau (TTT), between 2019 and 2023. (Source: Litter Intelligence, unpublished data) 
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2.2.2 Top three plastic items (Litter Intelligence and TTTDMP) 

The top three plastic items found differed between NRC’s two official Litter Intelligence survey 

areas (Hātea and Onerahi) over 30 surveys, and TTTDMP from 2019 to 2022. Based on 

percentage, hard plastic fragments were both the most common item 22% and 36% 

respectively. Foamed plastic and food wrappers were the next two top items at NRC’s survey 

areas, whereas soft plastic and glass fragments were observed during TTTDMP surveys (Fig. 7). 

 

Figure 7: Top three plastic items (based on percentage of all litter items) from NRC’s two official Litter Intelligence 
sites 2019 to 2023 (left), and Te Tai Tokerau Debris Monitoring Project (TTTDMP) between March 2019 and March 
2022 (right). (Source: Litter Intelligence, TTTDMP, unpublished data) 

2.2.3 District level, including Whangārei Harbour 

The proportion of plastic litter differed across the districts in the Litter Intelligence data (Fig. 

8), being highest in the Kaipara (88%) and the Far North (82%); these levels were also higher 

than the regional and national levels. In contrast, the proportion of plastics was 56% in the 

Whangārei district and 52% in Whangārei Harbour, below both the regional and national levels 

(Fig. 8). Findings for the Kaipara district were consistent with TTTDMP data. Although TTTDMP 

data for Whangārei district and Whangārei Harbour had higher proportions of plastics than 

Litter Intelligence surveys, these were still below the regional level (Fig. 9). 

 

  
Figure 8: Composition of plastic litter (percentage) collected under the Litter Intelligence programme between 2019 
and 2023 (left), and Te Tai Tokerau Debris Monitoring Project (TTTDMP) between March 2019 and March 2021 
(right). Measured across Te Taitokerau’s three districts, as well as Whangārei Harbour sites. (Source: Litter 
Intelligence, TTTDMP, unpublished data) 
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The higher percentage of plastics observed in the Kaipara district is partly explained by the 

large variation in litter composition between sites across the region. The top three sites from 

the Litter Intelligence surveys are all located in that district, with more than 97% of litter being 

plastic items (Fig. 8). The Onerahi (boat ramp) site is a clear outlier (only 5% of items were 

plastics), decreasing the overall Whangārei district and regional percentage of plastic items. At 

that site, glass and ceramic items dominated (89%, Litter Intelligence unpublished data). 

2.2.4 Litter densities – regional level 

It was possible to compare data collected in Te Taitokerau during the KNZB 2019 (KNZB, 2021) 

and 2022 (KNZB, 2023b) National Litter Audits with Litter Intelligence data collected in the 

same years. Te Taitokerau consistently had a lower density level of litter than the national 

level, except in 2019 in Litter Intelligence data (Fig. 9). When comparing trends within projects, 

however, a difference emerged. While litter densities increased from 2019 to 2022 on land 

(KNZB) at the regional and national level, litter densities decreased in coastal surveys.  

 

 
Figure 9: Litter densities per 1,000m2 in 2019 (dark blue) and 2022 (light blue) across Aotearoa (NZ) and in Te 
Taitokerau (TTT). Surveys were conducted on beaches by Litter Intelligence (LI), and inland (towns and cities) by Keep 
New Zealand Beautiful (KNZB). (Sources: KNZB, 2019 and 2023; Litter Intelligence, unpublished data) 
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Plastic item densities varied among TTTDMP and Litter Intelligence surveys between 2019 and 

2022 (Fig. 10). The plastic density in Te Taitokerau was higher for TTTDMP surveys (212 

items/1,000m2) compared to Litter Intelligence surveys (162 items/1,000m2).  

 
Figure 10: Plastic litter densities per 1,000m2 collected by TTTDMP (2019-2022) and Litter Intelligence (2019-2023) 
from coastal surveys in Te Taitokerau. (Source: Litter Intelligence, TTTDMP, unpublished data) 

2.2.5 Litter densities – Whangārei Harbour level 

Litter Intelligence and TTTDMP surveys indicated the upper Whangārei Harbour had a higher 

density of litter than the rest of the harbour (Fig. 11). This is likely due to its closer location to 

the city of Whangārei, which is a source of litter (refer to section 3.0 stormwater studies); the 

Hātea river acts as a pathway between freshwater and marine environments.  

 

 
Figure 11: Litter densities per 1,000m2 across different areas in Whangārei Harbour. Data was collected by Litter 
Intelligence (LI, purple, 2019–2023) and TTTDMP (blue, 2019–2020). (Sources: Litter Intelligence & TTTDMP, 
unpublished data) 

The differences in litter composition and densities observed between the various projects can 

be explained by the location of surveys (e.g. KBNZ is land-based vs LI/TTTDMP are coastal-

based), the number of surveys conducted (Table 4), the area covered at a particular site, and 

the protocol used for data collection.  
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For example, KNZB conducted their surveys at the same sites in 2019 and 2022, while the 

number of surveys and sites increased over time for the Litter Intelligence programme (e.g. 10 

surveys at five regional sites in 2019 vs 43 surveys at 27 sites in 2022; Litter Intelligence, 

unpublished data). The Van Gool et al. (2021) study had a small sample size and amount of 

litter collected (20 items in total).  

 
Table 4: Survey effort from various projects on litter in Te Taitokerau (TTT) and across all three districts: Far North 

(FND), Kaipara (KD) and Whangārei (WD). Effort in Whangārei Harbour (WHA) is also included. Note: not specified 

(NS). (Sources: KNZB, 2019 and 2022; Van Gool et al., 2021; Litter Intelligence – LI and Te Tai Tokerau Debris 

Monitoring Project – TTTDMP, unpublished data) 

              TTT                                                       FND         KD    WD           WHA 
Number of surveys 

LI 96 15 19 62 34 

TTTDMP 249 44 22 183 112 

KNZB 16 NS NS NS NS 

Van Gool  9 6 0 3 0 

Number of sites 

LI 34 9 8 17 4 

TTTDMP 137 41 22 74 30 

KNZB 16 NS NS NS NS 

Van Gool  3 2 0 1 0 

 

In terms of protocol, TTTDMP primarily focused on the high-tide mark for random surveys 

along varying lengths at each site, instead of a wider width of the beach along a 100m transect. 

When comparing surveys conducted at the same site by Litter Intelligence and TTTDMP (Fig. 

12), differences in litter densities were also apparent when a different section of a beach was 

surveyed (e.g. at Sandy Bay and Ocean Beach), or the whole beach was surveyed rather than a 

100m transect (e.g. Onerahi, Pah Road). In contrast, when a survey was conducted in 

approximately the same area of a beach, results are within the same range (e.g. Langs Beach).  

 

 
Figure 12: Litter densities per 1,000m2 at sites surveyed by Litter Intelligence (purple, 2019–2022) and TTTDMP (blue, 
2019–2020) in Whangārei district. Note: the dotted lines represent the litter density estimates at district level from 
Litter Intelligence (purple) and TTTDMP (blue) surveys. (Sources: Litter Intelligence & TTTDMP, unpublished data) 
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2.2.6 Flux rates and estimated litter deposition 

Flux rates depend on litter accumulation over time: in this instance, 24 hours. A survey at the 
Hātea Litter Intelligence site by Northland Regional Council in November 2018 found 1,059 
items, yielding a 24-hour flux rate of 89 items (density 89 items/1,000m²). Assuming this daily 
rate, 6,497 items would accumulate over 73 days. However, only 1,315 items were recorded in 
February 2019, suggesting that 5,182 items (~80%) may have dispersed elsewhere in 
Whangārei Harbour or the marine environment (Table 3). 

 

Table 3: Estimated flux rate and ‘lost’ litter items at Hātea river site, Whangārei, Te Taitokerau.  
(Source: NRC, unpublished data) 

Information Details 
Number of litter items (19/11/2018) 1,059 

Number of litter items (01/02/2019) 1,315 

Number of days between flux survey and first LI survey 73 

Litter flux number of items (20/11/2018) 89 

Estimated litter loading rate 6,497 

Estimated number of ‘lost’ items  5,182 

Estimated percentage of ‘lost’ litter items 79.8% 
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3.0 Stormwater studies 

3.1 Composition of litter 
Between March and December 2021, the 51 LittaTraps installed across Te Taitokerau captured a total 

of 21,006 litter items, weighing 7.8kg, and consisted primarily of plastic (71.1% by count, 49.4% by 

mass) across all various land-use categories (Fig. 13).  

The proportion of plastic litter captured by LittaTraps fell within the range of Litter Intelligence and 

TTTDMP surveys (59.2–74.5%) for the region, while being slightly higher than the national level of 

68.6% (Litter Intelligence, unpublished data). 

 

 
Figure 13: Composition of litter (percentage) collected by LittaTraps in Te Taitokerau, in 2021. (Source: Martinez  
& Griffiths, 2023) 

3.2 Litter densities 
LittaTraps captured 15.8 litter items/ha/day, equivalent to 0.005kg/ha/day, with significantly higher 

densities captured in ‘hospital’ and ‘fast food’ land-use areas than in ‘commercial’, ‘residential’ and 

‘hotel/motel’ land-use areas (Martinez & Griffiths, 2023; Fig. 14). Capture rate was highest in winter 

(median = 19 items/ha/day), although no significant seasonal trends were detected. In terms of 

material type, ‘plastics’ had the highest loading rates by items. There were big differences between 

the amount of litter captured at different sites. One site captured 2409 items, which was 11% of all 

litter, while the best site captured just 26 items. 
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Figure 14: Median loading rates by item (items/ha/day), dry mass (kg/ha/day), and land-use category of litter items 
captured by LittaTraps in Te Taitokerau in 2021. The median (black line), double median (red line), and Q1 and Q3 (dotted 
lines) are also included. (Source: Martinez & Griffiths, 2023) 

3.3 High loading locations 
Several high-risk land uses were identified, such as ‘hospital’, ‘fast food’, ‘park/playground/skate 

park’, ’retail’, ‘transport, postal and warehousing’ and ‘public car parks’ (Martinez & Griffiths, 2023). 

Unsurprisingly, the nine considered ‘hot spots’ (which caught 50% of the total litter) were all located 

in those high-risk areas, and the highest load was captured in a city-centre car park (352 

items/ha/day; 0.14kg/ha/day). In contrast, ‘residential’, ‘commercial’, ‘local government’ and 

‘hotel/motel’ land uses captured <1% of all litter (Martinez & Griffiths, 2023). 
 

The project estimated that 13.2 million litter items are released annually from the region’s 

stormwater network, including 8.7 million plastic items. If foamed plastics are included, this number 

increases to 9.4 million items (Martinez & Griffiths, 2023).  

3.4 Top three items 
The top three types of plastic litter items were like those found in shoreline surveys within Te 

Taitokerau. Cigarette butts were the largest contributor to litter items (Table 5). Soft and hard plastic 

fragments were the second- and third-most found items. 
 

The prevalence of hard plastic fragments may be caused by larger hard plastic items degrading due 

to weathering processes, including photodegradation (Valadez-Gonzalez et al., 1999; Thompson et 

al., 2004). These can then further degrade into microplastics (e.g. Zhang et al., 2021). 
 

Table 5: Top two litter items captured by LittaTraps in Northland in 2021, according to land use. 
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3.5 Hard plastic fragment colours 
Hard plastic fragments dominate Te Taitokerau's coastal litter, ranking third in land and stormwater 

surveys. Studies on their colours revealed white as the dominant colour, comprising about a third of 

hard plastics. Blue ranked second, and clear/transparent third highest colour across all districts. 

McCaulay (2020) assessed 5,409 hard plastic fragments, with consistent colour patterns (Fig. 15). 
 

Northland Regional Council’s July 2019 examination at the Hātea River site showed similar results, 

with white, clear/transparent and blue fragments being the most prevalent, in line with the regional 

pattern (TTTDMP, NRC, McCaulay, 2020). 

 
Figure 15: Percentage of the top three predominant colours of hard plastic fragments collected during TTTDMP surveys 
(2019 and 2020) across Te Taitokerau, Far North, Kaipara and Whangārei districts (2020), and by NRC (July 2019) at the 
Hātea river site. (Sources: TTTDMP, unpublished data: McCaulay, 2020; NRC, 2019; unpublished data) 

3.6 Food packaging 
Food packaging, especially when made of plastics, was one of the top three items in Te Taitokerau, 

which is consistent with the rest of Aotearoa (Fig. 7; Litter Intelligence & TTTDMP, unpublished data; 

KNZB, 2021 and 2023b).  
 

Out of a total of 470 food wrappers collected at the five sites around Whangārei Harbour, 74% still 

had the brand name visible. Of those, 57% were considered plastic items (Guilloux, 2020). Of the 

distinct plastic wrapper items, sweets (16.8%), lollipops (15.7%) and chocolate (13.4%) were the most 

common (Fig. 16). Chocolate and sweets were also the only two classes of food wrappers present at 

all sites. Other relatively common plastic food wrapper classes included mints (11.1%), chocolate 

bars (9.7%) and ice-cream (7.0%). These six item categories represented 73.7% of plastic food 

wrappers littered. 
 

 
Figure 16: Percentage of different categories of plastic food wrappers collected between 2019 and 2020 at various sites in 
Whangārei Harbour, Te Taitokerau. (Sources: TTTDMP; Guilloux, 2020) 
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3.7 Macroplastic pollution hazards 
3.7.1 Wildife 

There is limited data on the impact of macroplastic pollution on organisms in Te Taitokerau. In 
Aotearoa, macroplastic entanglement and ingestion have been observed in various megafauna 
species. Entanglement occurred in New Zealand fur seals (kekeno, Arctocephalus forsteri) in 
the Kaikoura region (Boren et al., 2006). Ingestion of plastic items was documented in 
immature and sub-adult stranded green turtles (Chelonia mydas) (Godoy & Stockin, 2018) and 
Sooty shearwaters (Ardenna grisea) (Hidalgo-Ruz et al., 2021) in Aotearoa. 

 

Plastic debris and fragments were also found in the nests of seabird colonies, including flesh-

footed shearwaters (Puffinus carneipes) on multiple North Island islands (Buxton et al., 2013), 

Chatham albatrosses (Thalassarche eremita), Northern royal albatrosses (Diomedea sanfordi), 

and Southern royal albatrosses (Diomedea epomophora) (Hidalgo-Ruz et al., 2021). Even 

though plastic was prevalent in Australasian gannet (tākapu, Morus serrator) nests at 

Horuhoru Island, entanglement was infrequent (Adams et al., 2020). Plastic debris poses 

entanglement, ingestion and health risks to seabirds, and affects conservation efforts (Buxton 

et al., 2013; Hidalgo-Ruz et al., 2021). This is significant given the predicted high risk of 

seabirds in the Tasman Sea ingesting plastic (Wilcox et al., 2015). 

3.7.2 Biosecurity 

A preliminary study along the Coromandel Peninsula indicated marine debris from aquaculture 

and urban marine structures act as rafts for non-indigenous species, creating biosecurity risks 

by enhancing their spread and dispersal (Campbell et al., 2017). Several biofouling taxa were 

documented, with the most common being hydroids, bryozoans, algae and polychaetes. 

Plastic, especially rope, was the dominant type of marine debris that acted as a raft.  

3.7.3 Human health 

Using a 10-year dataset (2007–2016) from the Accident Compensation Corporation (ACC), 

Campbell et al. (2019) demonstrated that marine debris are a pervasive hazard and lead to 

personal injury, representing an average of 1.6% of all claims across the country. Of these, the 

majority involved medical treatment (41%), followed by weekly compensation (31%) and 

hospital treatment (15%). The top five causes of injuries included loss of balance or personal 

control, punctures, tripping or stumbling, twisting movement, and collision or being knocked 

over by an object. This study also indicated that injuries affected all ages, especially young 

children (0–14). Finally, higher claims that exceeded the proportion of their populations were 

detected in regions considered tourism hubs, including Te Taitokerau (5.1%).  
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4.0 Microplastics 

4.1 Microplastics in freshwater 
Northland Regional Council collaborated with NIWA (National Institute of Water and Atmospheric 

Research). This was part of a global lakes microplastics study (known as the GALATIC (GlobAl LAke 

miCroplasTICs project) to collect samples from Lake Taharoa, a rare dune lake ecosystem in Te 

Taitokerau and 37 other lakes across 22 countries. 
 

Lake Taharoa had a microplastic level of 1.4 particles/m3, slightly lower than Lake Rotorua (1.8 

particles/m3) despite having a much lower population density (17/km2 vs. 170/km2). However, it 

exceeds the median concentration (0.9 particles/m3) of all study lakes but is below the average (1.9 

particles/m3) (Fig. 17). More than 90% of Lake Taharoa's plastic particles are smaller than 5 mm, 

consistent with findings in other lakes worldwide (Nava, V., et al, 2023). 
 

 
Figure 17: Microplastic particles/m3 trawl results from 38 lakes across the world. Lake Taharoa is circled in yellow and 
remaining Aotearoa lakes marked with white arrows. (Source: Nava, V., et al, 2023) 

4.2 Microplastics in seawater 
Preliminary results from seawater manta net trawl samples taken around the Bay of Islands (BOI), 

Matapōuri (MID) and Whangārei (WHG) (Fig. 18), indicated that the concentration of microplastics 

varied between and within trawling sites, ranging from 0.02 to 0.17 particles/m3 (Fig. 19). 

Microplastic concentrations were the highest in the near-shore area of the Bay of Islands, followed 

by the waters around Whangārei Heads as well as sites closer to shore, than in offshore waters in the 

Bay of Islands and Whangārei areas. 
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Figure 18: Locations of seawater manta net trawls in Te Taitokerau, 2021, during the Blue Cradle Expedition. (Source: 
ESR/AIM2, unpublished data) 

 

Figure 19: Microplastic concentration (particles/m3) in seawater samples collected by manta net trawls at different sites in 
Te Taitokerau, in 2021, during the Blue Cradle Expedition. (Source: ESR/AIM2, unpublished data) 

In Te Taitokerau, microplastics were mainly fibres (60%) and fragments (35%) (Figs. 20 and 22). 

Among the seven polymer types, polyethylene terephthalate (PET) constituted 41%, followed by 

polyethylene (PE) at 15% and polypropylene (PP) at 14% (Fig. 21). Of 11 colours identified, black 

(28%), blue (21%) and clear/transparent (20%) were the most common. 
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Figure 20: Proportion (percentage) of microplastic morphotypes in seawater samples collected by manta net trawls at 
different sites in Te Taitokerau, in 2021, during the Blue Cradle Expedition. (Source: ESR/AIM2, unpublished data) 

  
Figure 21: Proportion (percentage) of microplastic polymers in seawater samples collected by manta net trawls at different 
sites in Te Taitokerau, in 2021, during the Blue Cradle Expedition. (Source: ESR/AIM2, unpublished data) 
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Figure 22: Examples of microplastics collected in manta net trawls during the Blue Cradle Expedition along the east coast  
of Te Taitokerau, in 2021. Polyethylene terephthalate (PET, top left); acrylic (top right); polyethylene (PE, bottom left);  
and polypropylene (PP, bottom right). (Photos: ESR/AIM2) 

  

4.3 Microplastics in sediments 
Microplastics were ubiquitous in the coastal sediments of Te Taitokerau and varied significantly 

between sites, ranging from as high as 6.66 microplastics/kg (MP/kg) of dry weight (DW) in 

Mangawhai to as low as 0.31 MP/kg in Onerahi (Fig. 23; De Lena et al., 2021; Appendices 6 and 7). No 

significant differences in mean microplastic concentrations (per kg/DW) were detected between 

seasons (summer vs winter), coasts (east vs west) or location (north vs south).  
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Figure 23: Mean microplastic particles concentrations (per kg/DW) in sediments in Te Taitokerau, 2019–2020. The dashed 
lines indicate the mean concentration for Northland (light blue) and Auckland (dark blue) for comparative purposes. Error 
bars = standard deviation. (Source: De Lena et al., 2021) 

Mean microplastics concentrations (kg/DW) across Te Taitokerau (3.26 MPs/kg DW ± 4.35 SD; n = 
148) were significantly lower than sites in the Auckland region (6.03 MPs/kg DW ± 4.35 SD, n = 55; De 
Lena et al., 2021) (Fig 24). 

 

 
Figure 24: Boxplot of microplastics per kilogram of dry weight in sediments in Northland (Te Taitokerau) and Auckland. 
(Source: De Lena et al., 2021) 

The most common microplastic particles in the sediments of Te Taitokerau were fibres (50%), 

followed by fragments (36%, Fig. 25), which is consistent with preliminary results from seawater 

manta net trawls (Fig. 21). Sediments sampled in Auckland also showed fragments and fibres as 

common microplastic morphotypes. However, there was variation between the Auckland locations.  
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Figure 25: Proportion (percentage) of microplastic morphotypes in sediments in Te Taitokerau (TTT) and Auckland (AKL). 
(Source: De Lena et al., 2021; Bridson et al., 2020) 

The same three most common polymers found in seawater samples were also the most common 

polymers found in sediment samples (PE, 23%; PP, 18%; PET, 8%), (Figs. 21 and 26). Again, the 

proportions of polymers varied across sites and regions, with no obvious trends (Fig. 27; Appendices 

6 and 7). When data were available, only PP and PE were detected at 83% of the sites. The 

predominant colours of microplastics in sediments collected in Te Taitokerau were not assessed (De 

Lena et al., 2021). 

 
 

Figure 26: Proportion (percentage) of top three polymer types in sediment samples collected in Te Taitokerau (TTT) and 
Auckland (AKL). *No data available. (Source: De Lena et al., 2021; Bridson et al., 2020) 

4.4 Microplastics in shellfish 
Microplastics were detected in all three shellfish species and across all sampling sites within  

Te Taitokerau (ESR, unpublished data). The mean number of microplastic particles per individual 

varied between species and between sites for the same species (Fig. 27; Appendices 4 and 5). Cockles 

collected at Mangawhai had the highest concentration of microplastics (2.6 microplastics/individual), 

while pipis had the lowest (0.6 microplastics/individual). 
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Figure 27: Site, species and mean microplastic particles per individual of different shellfish species collected at four sites in Te 
Taitokerau in 2020. (Source: ESR, unpublished data) 

Fibres (55%) and fragments (45%) dominated microplastic morphotypes in all species and sites in the 
region (Fig. 28). This was consistent with seawater trawls (Fig. 20; ESR, unpublished data) and 
sediment samples (Fig. 25; De Lena et al., 2021) in Te Taitokerau. 

 
Figure 28: Proportion (percentage) of microplastic morphotypes in different species of shellfish sampled at various sites 
across Te Taitokerau in 2020. (Source: ESR, unpublished data) 

Various polymers were found in shellfish, and PET was consistently present. Other common polymers 

included PE, PP, PA (polyamide), PS (polystyrene) and ARC (acrylic), with variations among species 

and sites (Fig. 29). PE, PET and PP were prevalent in seawater and sediment samples regionally (Figs. 

21 and 26; ESR, unpublished data; De Lena et al., 2021). 
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Figure 29: Proportion (percentage) of top three polymer types found in three different shellfish species across four locations 
in Te Taitokerau. (Source: ESR, unpublished data) 

Finally, although the proportions of colours varied between sites and species, clear/transparent 

microplastics were the most dominant colour in shellfish species in Te Taitokerau (ESR, unpublished 

data). Blue was the next most common colour, followed by black (Fig. 30). This pattern differed from 

seawater samples (Fig. 22; ESR, unpublished data).  
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Figure 30: Top three microplastic colours found in three different shellfish species across four locations in Te Taitokerau. 
(Source: ESR, unpublished data) 
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5.0 What can we conclude? 

5.1 Macroplastic pollution 
Plastic pollution is an undeniable issue in Te Taitokerau. Plastics are the predominant type of litter 

(59–85%) found in the terrestrial and marine environments, despite some variation in proportions 

between districts. This is consistent with international (e.g. Ocean Conservancy, 2022) and national 

findings (KNZB, 2021 and 2023b; Van Gool et al., 2021; Litter Intelligence unpublished data). In terms 

of density, plastics levels in Te Taitokerau were below the national average (KNZB, 2023b; Litter 

Intelligence, unpublished data). 

5.2 Sources and pathways 
To date, available data on plastic pollution from various projects from Te Taitokerau have confirmed 

several sources and pathways. They include: 

• Illegal dumping and littering in Te Taitokerau are notable sources of litter and plastic pollution. By 

weight, Te Taitokerau had the highest rate of illegal dumping and littering in all regions of New 

Zealand (Litter Intelligence, unpublished data). 

• Certain land uses have been identified as high-risk areas for plastic pollution (e.g. commercial, 

retail, hospital, fast food, transport, postal, warehousing and public car parks). 

• Populated areas are also a source of pollution. Sites closer to Whangārei city have higher litter 

densities than the rest of the harbour (Litter Intelligence & TTTDMP, unpublished data). 

• Stormwater systems are an important pathway for litter and plastics to reach aquatic 

environments, annually releasing an estimated 13.2 million litter items, including 9.4 million 

plastic items. 

Waterways, such as the Hātea River, act as a pathway between freshwater and marine 
environments. A flux rate estimation at the Hātea river site further implied that a large proportion of 
litter is remobilised and deposited elsewhere. This might explain the difference in commonly found 
plastic items collected between land-based and coastal surveys. 

5.3 Specific litter items 
Cigarette butts are the primary contributors to macroplastic litter on land, at 32.7–42.6% (KNZB, 
2019 and 2023; Martinez & Griffiths, 2023), and remain a top-10 coastal litter item (Litter Intelligence 
& TTTDMP, unpublished data), aligning with global trends (Curtis et al., 2017). Cigarette butts are 
concerning due to their carcinogenic and toxic content, including polycyclic aromatic hydrocarbons 
(PAHs), tar, nicotine, arsenic and heavy metals, as well as the release of microplastic fibres (Belzagui 
et al., 2021). 
 
Coastal beaches primarily feature unidentified hard plastic fragments (22.5–36.3%), predominantly in 
white, clear/transparent and blue colours (Johns, 2019; NRC & TTTDMP, unpublished data). These 
colours consistently represent more than 10% of fragments, mirroring global findings (Martí et al., 
2020). Long exposure to sunlight likely causes this discoloration (Valadez-Gonzalez et al., 1999; 
Thompson et al., 2004; Ter Halle et al., 2017), but the weathering of plastics remains incompletely 
understood due to their varied composition and properties (Ter Halle et al., 2017). 
 
Beaches in the region exhibit a higher prevalence of plastic litter compared to land, partly attributed 
to plastic's lightweight nature (Andrady & Neal, 2009). Plastic items, especially in fragment form, can 
easily disperse through rain, runoff, tides, currents and wind (van Sebille et al., 2015; Napper et al., 
2020). Soft plastic fragments and plastic food wrappers are commonly found in Aotearoa and 
globally, reflecting the food industry's reliance on plastic for freshness and cost-efficiency (Ocean 
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Conservancy, 2022; Law & Narayan, 2022). Once in the environment, soft plastic food packaging, like 
other plastics, breaks down into fragments through weathering processes (Valadez-Gonzalez et al., 
1999; Thompson et al., 2004), contributing to the prevalence of unidentified soft plastic fragments in 
the region and across the country (Litter Intelligence & TTTDMP, unpublished data). 

5.4 Hazards 
While data specific to Te Taitokerau is lacking, existing Aotearoa studies suggest plastic pollution 
poses several risks:  

• threats to wildlife through entanglement and ingestion (e.g. Boren et al., 2006; Godoy & Stockin, 
2018; Hidalgo-Ruz et al., 2021) 

• biosecurity risks by helping non-indigenous species move to new locations (e.g. Campbell et al., 
2017) 

• health hazards, potentially causing personal injury (e.g. Campbell et al., 2019). 

5.5 Microplastic pollution 
In addition to the macroplastic pollution issue, the degradation of all these plastics produces 

microplastics and nanoplastics, which have become another issue of concern (Cole et al., 2011; 

Koelmans et al., 2015; Auta et al., 2017; Mendoza et al., 2019; Harris, 2020; Xu et al., 2020; Zhang et 

al., 2021; D’Avignon et al., 2022).  

5.6 Microplastic morphotypes 
Unsurprisingly, the presence of microplastic fibres, fragments and other microplastic morphotypes 

have been confirmed in the region’s coastal waters, sediments and some organisms (De Lena et al., 

2021 and 2022; ESR/AIM2, unpublished data). Synthetic microfibres often come from textiles 

shedding or being worn away. They can also be formed when larger items containing fibrous plastic 

materials, such as cigarette filters (Belzagui et al., 2021) and single-use surgical face masks (Shen et 

al., 2021), break down. 

5.7 Microplastic colours 
Microplastic colours in New Zealand's seawater and shellfish samples vary, with distinct patterns. In 
seawater, black is the most common, followed by blue and clear/transparent, while shellfish samples 
show the reverse order: clear/transparent leading, followed by blue and black (ESR/AIM2, 
unpublished data). These colours are also prevalent in hard microplastic fragments in Northland 
(Johns, 2019; McCaulay, 2020; TTTDMP & NRC, unpublished data).  
 

The colour of microplastics is useful to identify potential sources of plastics as well as potential 
contamination (Ren et al., 2020). Dyeing plastics can give them specific properties, such as 
malleability and tolerance, thus lasting longer in the environment.  
 

In Aotearoa, microplastic colours turn up in varied patterns among marine species. Black and blue 
are common in fish species (Markič et al., 2018; Clere et al., 2022) and the scat (faeces) of baleen 
whales (Zantis et al., 2022), while clear/transparent prevails in common dolphins (Stockin et al., 
2021). These findings align with seawater sample results from Te Taitokerau. 

5.8 Microplastic polymers 
Various polymers, including PET, PE and PP, have been detected in seawater, sediment, and shellfish 
samples in Te Taitokerau, suggesting multiple sources of microplastic pollution (De Lena et al., 2021; 
AIM2/ESR, unpublished data). 
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PE and PP, commonly used for single-use packaging and protective equipment such as face masks, 
are prevalent polymers in the environment. Additional polymers, such as PET, PA, nylon and acrylic, 
originate from textiles and the fishing industry (Klein et al., 2022). 
 

PE, PP and PET have been found in various ecosystems in Aotearoa, including freshwater streams, 
wastewater effluents, the atmosphere and various organisms. This raises concerns about potential 
health consequences for the organisms and humans who unwittingly consume them (e.g. Campanale 
et al., 2020; Kwon et al., 2020; Huang et al., 2021). 
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6.0 Next steps 
Aotearoa is at a pivotal point. The country must rethink its relationship with plastic, initiate change and 

improve its understanding of plastic pollution to mitigate the effects of plastics, while retaining their many 

benefits (Office of the Prime Minister’s Chief Science Advisor (PMCSA), 2019). Differences in findings 

observed between sites across Te Taitokerau, and other regions of Aotearoa, highlight the need to monitor 

as many locations and species as possible to better understand microplastic pollution, its sources, 

pathways, and effects on local organisms. 

6.1 Where to from here? 
Despite widespread recognition of the harm it causes, plastic pollution is still growing and will persist 

for decades – if not centuries – even if humans stopped producing and using plastics immediately 

(Barnes et al., 2009). Furthermore, the implications of plastic pollution, particularly microplastics, are 

yet to be thoroughly understood (Campanale et al., 2020).  
 

Ultimately, human behavioural patterns are responsible for plastic production and the associated 

pollution. This is through the use of plastic-enabled products that break down over time and release 

microplastics, as well as the disposal of plastic items consumed (Tremblay et al., 2020). This is a 

global issue anchored in systems of production and consumption in a linear economic model, where 

plastic items are convenient and waste management practices and infrastructures are often absent 

or inadequate (Burgess et al., 2017). 

6.2 Mitigation measures 
Measures that can help reduce the amount of litter and plastics generated include (Fig. 31) (e.g. 
(PMCSA, 2019; MfE, 2021): 

• raising consumer and distributor awareness for plastic alternatives 

• promoting sustainable production and consumption patterns 

• holding plastic producers responsible for disposal of the items they produce 

• implementing economic incentives such as plastic-bag charges and Container Return Schemes 

• using preventative measures, banning certain single-use plastics, and investing in waste 
management infrastructure 

• focusing on research for product design and process efficiency 

• enhancing knowledge about plastic sources, pathways and destinations 

• collaborating on research to address knowledge gaps 

• strengthening the implementation of existing legislation 

• conducting clean-ups in aquatic environments when needed 

• applying the precautionary principle in cases of limited evidence, such as nanoplastics. 
 
Examples of solutions implemented in Te Taitokerau include: 

• providing detailed information about recycling and waste (NRC, FNDC, KDC, WDC), including 
plastic waste from agriculture (NRC) 

• supporting educational programmes (e.g. Enviroschools, Para Kore) and community clean-up 
events (e.g. Bay Beach Clean, F.O.R.C.E., Sea Cleaners) 

• providing support for businesses to audit and reduce plastic waste (e.g. EcoStar Programme by 
EcoSolutions and WDC's  Waste Minimisation Strategy) 

• reducing single use-plastics and increasing recycling at events, venues and facilities (e.g. Stone, 
2022) 

• collaborating with research institutes and citizen science programmes to monitor litter and plastic 
pollution (e.g. Litter Intelligence, TTTDMP, ESR/AIM2, Scion). 

 

https://www.nrc.govt.nz/environment/waste-and-pollution/
https://www.fndc.govt.nz/Our-services/Rubbish-and-recycling
https://www.kaipara.govt.nz/services/rubbish-recycling
https://www.wdc.govt.nz/Services/Rubbish
https://www.nrc.govt.nz/environment/farm-management/farm-plastic-wastes/
https://enviroschools.org.nz/regions/northland/
https://www.northlandwaste.co.nz/about-us/community/parakorezerowaste/
http://www.baybushaction.org.nz/BayBeachClean
https://www.force.org.nz/
https://seacleaners.com/
https://www.ecosolutions.org.nz/pages/about-the-ecostar-programme
https://www.wdc.govt.nz/files/assets/public/v/5/documents/council/plans/waste-management-and-minimisation-plan.pdf
https://www.nrc.govt.nz/environment/coast/coastal-litter-monitoring-in-northland/
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Figure 31: Illustration of the wide variety of groups whose actions can contribute to transformational change in Aotearoa. 
(Source: PMCSA, 2019) 

6.3 Research 
It is crucial to address knowledge gaps and build a comprehensive understanding of microplastic 
pollution's impact on Aotearoa's ecosystems, organisms and potential risks to human health 
(Tremblay et al., 2020). Plastic pollution, including microplastics, threatens cultural practices of 
tangata whenua, such as kaimoana gathering (Hikuroa, 2017). Standardised methodologies are 
lacking, which hinders the ability to compare findings with global and local research (Kühn & van 
Franeker, 2020). 

 

Methodological standardisation, including measuring plastic use and disposal in Aotearoa, is vital 
(PMCSA, 2019). Research should encompass smaller streams and diverse sedimentary environments, 
including pristine locations (Dikareva & Simon, 2019; Harris, 2020). The One Health approach, which 
considers the interconnection of wildlife, human and ecosystem health, is relevant for plastic 
pollution assessments (Rabinowitz et al., 2018). Given the knowledge gaps that currently exist, 
adopting a precautionary approach is advisable (Tremblay et al., 2020). 
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APPENDIX 1 
The seven types of plastics, including their properties, common use, recyclability and toxicity. Note: The triangle symbols on plastic products do not imply that a product is always 
recyclable. The number inside each chasing-arrow triangle represents the resin identification code, which indicates the type of plastic the product is made of. 

Polymer 
name 

Polyethylene 
terephthalate 

High-density 
polyethylene 

Polyvinyl 
chloride 

Low-density 
polyethylene 

Polypropylene Polystyrene All other plastics 

Resin 
Identification 
Code and 
abbreviation 

       

Clarity Clear Translucent Clear Translucent Translucent Clear 

Catch-all for other 
plastic resins not 

previously described 
or a combination of 
these plastics (e.g. 

nylon, acrylic, 
polylactic acid). 

 
#7 PLA plastics are 

compostable plastics 
made of bio-based 

polymers.  

Rigidity 
Stiffness 

Moderate  
to high 

Moderate 
Moderate  

to high 
Low 

Moderate  
to high 

Moderate  
to high 

Resistance to 
impact 

Good to excellent Good to excellent 
Fair to 
good 

Excellent 
Poor to  

good 
Poor to  

good 

Resistance to 
heat 

Poor to 
fair or high 

Good 
Poor to 

fair 
Fair Good Fair 

Resistance to 
cold 

Good Excellent Fair Excellent 
Poor to 

fair 
Poor 

Resistance to 
sunlight 

Good or poor Fair 
Poor to  

good 
Fair or poor Fair 

Poor  
to fair 

Moisture barrier 
Fair to  
good 

Good to excellent Fair Good 
Good  

to excellent 
Poor to  

fair 

Other properties 
▪ Good microwave 

transparency 
▪ Solvent-resistant 

▪ Soft waxy 
surface 

▪ Permeable to 
gas 

▪ Pigmented 
bottles are 
stress-resistant 

▪ Good chemical 
resistance 

▪ Low gas 
permeability 

▪ Stable electrical 
properties 

 

▪ Waxy surface 
▪ Low melting 

point 
▪ Stable electrical 

properties 
 

▪ Waxy surface 
▪ High melting 

point 
▪ Excellent 

chemical 
resistance 

 

▪ Glassy surface 
▪ Affected by fats 

and solvents 
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Polymer 
name 

Polyethylene 
terephthalate 

High-density 
polyethylene 

Polyvinyl 
chloride 

Low-density 
polyethylene 

Polypropylene Polystyrene All other plastics 

Commonly  
used for 

▪ Water and soft drink 
bottles 

▪ Sport drink bottles 
▪ Other beverage bottles 
▪ Some condiment 

bottles 
▪ Some shampoo and 

mouthwash bottles 
▪ Food jars 
▪ Medicine jars 
▪ Cups 
▪ Rope 
▪ Combs 
▪ Tote bags 
▪ Clothing and carpet 

fibres 
▪ Prepared food trays 

and roasting bags 
 

▪ Milk jugs 
▪ Non-carbonated 

drink bottles 
▪ Cosmetic bottles 
▪ Household 

cleaner bottles 
▪ Some plastic 

bags 
▪ Motor oil 

containers 
▪ Snack food 

boxes 
▪ Cereal box liners 
▪ Toys 
▪ Buckets 
▪ Some pipes 
▪ Crates 
▪ Plant pots 
▪ Garden furniture 
▪ Playground 

equipment 
▪ Refuse bins and 

compost 
containers 

▪ Park benches 
▪ Truck bed liners 

▪ Pipes and fittings 
▪ Plumbing pipes 
▪ Wire and cable 

sheeting 
▪ Credit cards 
▪ Carpet backing 
▪ Floor covering 
▪ Window and door 

frames 
▪ Rain gutters 
▪ Synthetic leather 

products 
▪ Clear plastic food 

wrapping 
▪ Cooking oil bottles 
▪ Teething rings 
▪ Pool liners 
▪ Auto products 
▪ Shower curtains 
▪ Child and pet toys 
▪ Garden hoses 

▪ Plastic wraps 
▪ Sandwich bags 
▪ Bread bags 
▪ Newspaper bags 
▪ Produce bags 
▪ Squeezable 

bottles 
▪ Hot and cold 

beverage cups 
▪ Plastic shopping 

bags 
▪ Thick shopping 

bags 
▪ Food storage 

containers and 
lids 

▪ Bubble wraps 
▪ Trays and 

containers 
▪ Irrigation pipes 
▪ Wire and cable 

covering 
▪ Coating for 

paper milk 
cartons 

▪ Most bottle tops 
▪ Juice bottles 
▪ Drinking straws 
▪ Prescription 

bottles 
▪ Some condiment 

bottles 
▪ Yoghurt and 

margarine 
containers 

▪ Hot food 
containers 

▪ Potato chip bags 
▪ Heavy-duty bags 
▪ Kitchenware 
▪ Disposable 

plates, cups, 
cutlery 

▪ Packing tape 
▪ Hangers 
▪ Hinged lunch 

boxes 
▪ Disposable 

diapers 
▪ Sanitary pad 

liners 
▪ Thermal vests 
▪ Auto parts 
▪ Fabric/carpet 

fibres 

▪ Disposable foam 
cups 

▪ Hot cups 
▪ Foam packaging 
▪ Takeaway food 

containers 
▪ Plastic cutlery 
▪ Egg cartons 
▪ Fast-food trays 
▪ Rigid foam 

insulation 
▪ Video cases 
▪ Coat hangers 
▪ Low-cost, brittle 

toys 
▪ Underlay 

sheeting for 
laminate flooring 

▪ Baby bottles 
▪ Sippy cups 
▪ Large, multi-litre 

water containers 
▪ Medical storage 

containers 
▪ Safety glasses 
▪ Exterior lighting 

features 
▪ Metal linings of  

food cans 
▪ CDs and DVDs 
▪ Dental sealants 
▪ Headlight lenses 
▪ Nylon 

Decomposition 
under ideal 
conditions 

5–10 years 100 years Never 500–1,000 years 20–30 years 50 years 

Varies 
Majority: never 
Polylactic acid:  

6 months 
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Polymer 
name 

Polyethylene 
terephthalate 

High-density 
polyethylene 

Polyvinyl 
chloride 

Low-density 
polyethylene 

Polypropylene Polystyrene All other plastics 

Recyclability 
(kerbside) 

Kerbside recycling in 
Northland 

Kerbside recycling 
in Northland 

No kerbside 
recycling  

in Northland 

No kerbside 
recycling 

 in Northland 

Kerbside recycling 
in most places  
in Northland 

No kerbside 
recycling  

in Northland 

Difficult to recycle. 
No kerbside recycling 

in Northland 

Can be recycled 
into 

▪ Plastic bottles 
▪ Storage containers 
▪ Fleece garments 
▪ Carpets 
▪ Rope 
▪ Stuffing for pillows, 

jackets and sleeping 
bags 

▪ Bean bags 
▪ Car bumpers 
▪ Tennis-ball felt 
▪ Combs 
▪ Sails for boats 
▪ Furniture 

▪ Plastic bottles 
and jugs 

▪ Detergent 
bottles 

▪ Plastic lumber 
▪ Playground 

equipment 
▪ Fencing 
▪ Rope  
▪ Toys 
▪ Plant pots 
▪ Crates 
▪ Decking 

▪ Pipes 
▪ Panelling 
▪ Flooring 
▪ Carpet backing 
▪ Roadside gutters 
▪ Traffic cones 
▪ Credit cards 
▪ Wall siding 
▪ Binders 
 

▪ Compost bins 
▪ Rubbish bins 

and bags 
▪ Plastic lumber 
▪ Floor tiles 
▪ Furniture 
▪ Shipping 

envelopes 

▪ Storage bins 
▪ Food containers 
▪ Paint cans 
▪ Cutting boards 
▪ Hangers 
▪ Mixing bowls 
▪ Watering cans 
▪ Shovels 
▪ Brooms 
▪ Ice scrapers 
▪ Auto parts 
▪ Shipping pallets 
▪ Speed bumps 
▪ Plant pots 

▪ Rigid foam 
insulation 

▪ Foam protective 
packaging 

▪ Egg cartons 
▪ Picture frames 
▪ Moldings 
▪ Rulers 
▪ Cassette tapes 
▪ Home décor 

products 
▪ Hangers 
▪ Plant pots 
▪ Toys 
▪ Tape dispensers 

▪ Electronic housings 
▪ Auto parts 
 
▪ PLA compostable 

plastics are NOT 
recyclable 

Toxicity level 

High 

 

 

Low 

 

 

High 

 

 

Low 

 

 

Low 

 

 

High 

 

 

High 

 

 

Most commonly 
leached toxin(s) 

▪ Antimony oxide 
▪ Bromine 
▪ Diaszomethane 
▪ Lead oxide 
▪ Nickel ethylene oxide 
▪ Benzene 

▪ Chromium oxide 
▪ Benzoyl peroxide 
▪ Hexane 
▪ Cyclohexane 

▪ Benzene 
▪ Carbon 

tetrachloride 
▪ 1,2-

Dicholroethane 
▪ Phthalates 
▪ Ethylene oxide 
▪ Lead chromate 
▪ Methyl acrylate 
▪ Methanol 

▪ Benzene 
▪ Chromium oxide 
▪ Cumene 

hydroperoxide 
▪ Tert-butyl 

hydroperoxide 

▪ Methanol 
▪ 2,6-di-ter-butyl-

4methyl phenol 
▪ Nickel dibutyl 

dithiocarbonate 

▪ Styrene 
▪ Ethylbenzene 
▪ Benzene 
▪ Ethylene 
▪ Carbon 

tetrachloride 
▪ Polyvinyl alcohol 
▪ Antimony oxide 
▪ Tert-butyl 

hydroperoxide 

▪ Bisphenol A (BPA) 
▪ Bisphenol S (BPS) 
▪ Other toxins 

mentioned  
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Polymer 
name 

Polyethylene 
terephthalate 

High-density 
polyethylene 

Polyvinyl 
chloride 

Low-density 
polyethylene 

Polypropylene Polystyrene All other plastics 

▪ Phthalic 
anhydride 

▪ Tetrahydrofuran 
▪ Tribasic lead 

sulfate 
▪ Mercury 
▪ Cadmium 
▪ Bisphenol A (BPA) 

▪ Benzoquinone 

Health risks 

▪ Can leach toxic metal 
antimony (carcinogen) 
especially when 
shelved for a long time 
or exposed to high 
temperatures 

▪ Can also leach 
bromine, which acts as 
a central nervous 
system depressant and 
can trigger 
psychological 
symptoms 

▪ Never heat PET plastics 
and only use once to 
reduce risks of leaching 

▪ Considered one 
of the safest 
forms of plastic 

▪ Safer option for 
food and drinks 

▪ But never safe to 
reuse HDPE 
plastic for 
food/drink if it 
did not originally 
contain either 

▪ HDPE can leach 
oestrogen-
mimicking 
chemicals that 
can disrupt 
hormones and 
even alter 
structure of 
human cells 

▪ Most hazardous 
plastic and 
contains many 
toxins 

▪ Toxins can leach 
throughout its 
entire life cycle 

▪ Chemicals can 
cause cancer and 
disrupt the 
hormonal system 

▪ Linked to chronic 
conditions (e.g. 
allergies, asthma 
and autism) 

▪ Toxic when 
heated. Never use 
for cooking or 
storing food 

▪ Less toxic than 
other plastics 
and relatively 
safe to use 

▪ But could leach 
oestrogen-
mimicking 
chemicals 
(similar to those 
in HDPE) 

▪ Chemicals can 
disrupt 
hormones and 
potentially alter 
the structure of 
human cells 

▪ A safer plastic 
option for food 
and drink use as 
can withstand 
high 
temperatures 
and is less likely 
to leach 
chemicals 

▪ Although 
microwave-safe, 
these plastics 
could still leach 
some chemicals 
that could lead to 
asthma and 
hormone 
disruption 

▪ A highly toxic 
form of plastic 

▪ Leaches many 
toxins, including 
styrene, which 
can cause cancer 
and damage to 
the nervous 
system 

▪ Styrene could 
also affect 
genes, lungs, 
liver and 
immune system 

▪ More styrene is 
leached with 
heat 

▪ Difficult to know 
exactly which toxins 
can be found in this 
type of plastic 

▪ Good chance these 
plastics could leach 
BPA and BPS 

▪ BPA and BPS are 
endocrine 
disruptors, which 
can affect 
hormones and 
cause issues with 
growth and 
development, 
tissue function, 
obesity, sexual 
function and 
reproduction, brain 
and neurological 
functions, etc. 
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APPENDIX 2 
Various polymer morphotypes that either sink or float in seawater (Source: Kershaw & Rochman, 2015; 
Maphoto/Riccardo Parvettoni, 2016) 

 

 
APPENDIX 3 
Locations of litter survey conducted in Te Taitokerau, Northland. 

 
Figure A: Locations of beach surveys conducted in Te Taitokerau, Northland under the Litter Intelligence programme 
between 2019 and 2022 (left), and Te Tai Tokerau Debris Monitoring Programme (TTTDMP) between March 2019 and 
March 2021 (right). (Source: Litter Intelligence, Sustainable Coastlines) 
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Figure B: Area of Whangārei city centre, Te Taitokerau, Northland, systematically surveyed for parking tickets (June 2021–
November 2022) and face masks (September 2021–November 2022) by Te Tai Tokerau Debris Monitoring Project 
(TTTDMP). (Source: TTTDMP, unpublished data) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 3 
Characteristics of microplastics (percentage of type, size, polymer morphotype, and colours) documented in various species of New Zealand fauna across different locations. 
Note: Percentage of polymer type, morphotype, and colour shown in brackets. Abbreviations: acrylonitrile butadiene styrene (ABS); cellulose and regenerated cellulose (cotton, rayon 
or cellophane) (C & CR); polyamide/nylon (PA); polyacrylonitrile (PAN); polybutadiene acrylonitrile (PBAN); polyethylene (PE); polyethylene glycol (PEG); poly(ethylene terephthalate) 
(PET); poly(methyl methacrylate) (PMMA); polystyrene (PS); polyurethane (PU); polyvinyl alcohol (PVA); polyvinylchloride (PVC); not assessed or not publicly available (NA).  

Species Location Microplastic types and size Polymer morphotype Colours References 
Invertebrates 

Sponges 
6 species (45) 

Wellington Harbour 

• Evans Bay 

• Shark Bay 

• Māhanga Bay 

Type 
Fragments > fibres 

 

Size > 100μm more abundant 

NA NA Parry et al. (2023) 

Pipi 
(Paphies australis) 

Northland 
3 locations 

Type 
Fragments (67%) 

Fibres (33%) 
 

Size (NA) 

PE (45%) 
PET (33%) 
PA (11%) 

PE.PP (11%) 

Clear (78%) 
Black (11%) 

Orange (11%) 

 
ESR & NRC 

(unpublished data) 
 

Wedge shell 
(Macomona liliana) 

Type 
Fibres (70%) 

Fragments (30%) 
 

Size (NA) 

PET (64%) 
PP (30%) 
PS (3%) 

ABS (3%) 

Clear (57%) 
Blue (27%) 
Black (13%) 

Red (3%) 

Cockle 
(Austrovenus stutchburyi) 

• Mangawhai 
 

Type 
Fibres (74.5%) 

Fragments (25.5%) 
 

Size (NA) 

PET (82%) 
PP (8%) 
PS (2%) 
PE (2%) 

Other (6%) 

Clear (63%) 
Blue (17%) 
Grey (8%) 

Yellow (2%) 
Orange (2%) 
White (2%) 
Green (2%) 
Black (2%) 
Pink (2%) 

Cockle 
(Austrovenus stutchburyi) 

• Te Haumi 

Type 
Fibres (82.5%) 

Fragments (17.5%) 
 

Size (NA) 

PET (80%) 
PE (7.5%) 

Acrylic (5%) 
PA (2.5%) 
PP (2.5%) 
PS (2.5%) 

Clear (70%) 
Blue (22.5%) 

Grey (5%) 
Yellow (2.5%) 
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Species Location Microplastic types and size Polymer morphotype Colours References 

Cockle 
(Austrovenus stutchburyi) 

• Onerahi 

Type 
Fragments (87.5%) 

Fibres (12.5%) 
 

Size (NA) 

PE (75%) 
PA (8.5%) 
PET (8.5%) 

PS (4%) 
Other (4%) 

Clear (92%) 
Yellow (8%) 

 

Cockle 
(Austrovenus stutchburyi) 

Bay of Plenty 
29 locations 

• Tauranga 

• Ōhiwa Harbour 

• Eastern coastline 

Type 
Fibres (50%) 

Fragments (45%) 
Films (5%) 

 

Size 10–20mm prevalent 
PET (34%) 
PA (27%) 
PE (25%) 
PVC (9%) 

Inorganics (5%) 
 

NA Lewis (2021) 
Wedge shell 
(Macomona liliana) 

Type 
Fragments (80%) 

Fibres (17%) 
Films (3%) 

 

Size 20–30mm prevalent 

Tuatua 
(Paphies subtriangulata) 

Type 
Fibres (52%) 

Fragments (48%) 
Films (0%) 

 

Size 40–50mm prevalent 

Mediterranean mussel 
(Mytilus galloprovincialis) 

Wellington Harbour 

• Oriental Bay 

• Kau Point 

• Scorching Bay 

Type 
Fibres (96%) 

Fragments (4%) 
 

Size 
1–2mm (40%) 
2–5mm (36%) 
< 1mm (24%) 

NA 

Blue (52%) 
Black (26%) 

Colourless (14%) 
Red (5%) 

Green (1%) 
Orange (1%) 
White (<1%) 
Purple (<1%) 
Yellow (<1%) 

Shannon (2020) 
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Species Location Microplastic types and size Polymer morphotype Colours References 

Green-lipped mussels 
(Perna canaliculus) 

North Island 
South Island 

9 locations, 16 sites 

Type 
Fragments (71%) 

Beads (19%) 
Fibres (10%) 

 

Size 
100–200μm (52%) 
50–100μm (28%) 

> 300μm (19%) 

PE (38%) 
Polyamide-imide (28%) 

Acrylic (19%) 
Nylon (5%) 
Rayon (5%) 
PVA (5%) 

Blue (38%) 
Red (33%) 

Transparent (14%) 
Orange (10%) 

Green (5%) 

Webb et al. (2019) 

Green-lipped mussels 
(Perna canaliculus) 

NZ supermarkets 
Fragments (93%) 

Fibres (7%) 
Predominantly PP NA Mazlan et al. (2022) 

Vertebrates (Fish) 

Marine species 
Parore (Girella tricuspidata) (20) 

Leatherjacket (Meuschenia scaber) 

(19) 

Yellowtail kingfish (Seriola lalandi) 

(15) 

Grey mullet (Mugil cephalus) (22) 

Tarakihi (Nemadactylus macropterus) 

(23) 
Australasian snapper (Pagrus 

auratus) (22) 

Blue fin gurnard (Chelidonichthys 

kumu) (27) 

Y.t. jack mackerel (Trachurus 

novaezelandiae) (31) 

Garfish (Hyporhamphus ihi) 

NZ 
Auckland Fish Market 

 

Type 
Fibres (45%) 

Fragments (34%) 
Film (21%) 

 

Size 
1–5mm (40%) 

0.5–1mm (29%) 
0.1–0.5mm (24%) 

> 5mm (7%) 

(Rayon) (50%) 
PE (20%) 

PES (15%) 
PP (15%) 

 

Black 
White 
Blue 

Green 

Markic et al. (2018) 

Hoki 
(Macruronus novaezelandiae) 

West Coast 
Cook Strait 

Type 
Fibres (90.9%) 

 

Size 
NA 

NA NA Rotman (2020) 

Coastal inshore species (6), 
including: 
Y.b. flounder (Rhombosolea 

leporina)  

Auckland, Hauraki Gulf  
11 locations 

NA NA NA Shetty (2020) 
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Species Location Microplastic types and size Polymer morphotype Colours References 
Red gurnard (Chelidonichthys kumu)  
Pilchard (Sardinops sagax) 

Greenback horse mackerel 
(Trachurus declivis) (25) 

Auckland 
Hauraki Gulf 

Type 
Fragments (100%) 

 

Size 4.5–10mm 

PE (43%) 
PP (14%) 
PA (14%) 

PAN + PBAN (14%) 
PMMA (14%) 

Transparent (43%) 
Green (14%) 
Black (14%) 
Red (14%) 
Blue (14%) 

Jawab et al. (2021) 

Benthic and pelagic marine fish 
10 species (155) 

Otago 
Southland 

 

Type 
Fibres (86.7% pelagic, 82.3% benthic) 

Film 
 

Size < 5 mm (99%) 

PE (68%) 
Viscose (14%) 

PE + pumbophyllite 
(12%) 

PP + TiO2 (2%) 
PP + PO4 (2%) 

Blue  
(33.3% pelagic, 38% benthic) 

Black 
Red 

White 

Clere et al. (2022) 

Tarakihi 
(Nemadactylus macropterus) 

NZ supermarkets 
Fragments (59%) 

Fibres (26%) 
Beads (15%) 

PEG NA Mazlan et al. (2022) 

Vertebrates (marine mammals) 

Bryde’s whales 
(Balaenoptera brydei) (18 scat samples) 

 
Sei whales 
(Balaenoptera borealis) (3 scat samples) 

Auckland coastal waters 
 

Type 
Fibres (99%) 

Fragments or films (1%) 
 

Size 
Mean 1085μm ± 1395 (SE) 

Range: 152–26,290μm 

Regenerated cellulose 
(84%) 

PE (4%) 

Blue or black (83%) 
Red (9%) 

Clear/transparent (3%) 
Green (2%) 
Brown (2%) 
Purple (1%) 

Zantis et al. (2022) 

Common dolphins 
(Delphinus delphis) (15) 

 
 
 

Northland 
Auckland 

Wairarapa 
Wellington 

Marlborough Sounds 

Type 
Fragments (77%) 

Fibres (23%) 
 

Size 
Fragments 

Mean: 584 ± 925μm 
Range: 44–4361μm 

Fibres 
Mean: 1567 ± 1969μm 
Range: 198–10,032μm 

Fragments 
PE (31%) 

ABS (20%) 
PET (15%) 

 

Fibres 
PET (65%) 
PP (13%) 

Translucent/clear 
(46%) 

Black (10%) 
Orange (10%) 

Multi-coloured (10%) 
Blue (7%) 

Stockin et al. (2021) 
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APPENDIX 4 
Amount of microplastics detected in various species of New Zealand fauna across different locations.  
Depending on the study, data are provided as particle per dry weight (unless specified). PIR = plastic ingestion rate (% of individual fish of the same species containing one or more 
plastic items); AP = average plastic (the average number of microplastics per individual for the total sample size or total microplastic/total sample size); PL = plastic load (the average 
number of microplastics per individual, only for those that had ingested microplastics or total microplastic/sample size of ingested).  Abbreviations: Bay of Plenty (BOP); not assessed or 
not publicly available (NA); not detected (ND); standard deviation (SD); standard error (SE).  

Species Location 
Particles  

(dry weight) 
PIR (%) AP PL References 

Invertebrates 

Sponges, 6 species (45) 
• Suberites australiensis 

• Crella incrustans 

• Halichondira knowltoni 

• Crella affinis 

Wellington Harbour 

• Evans Bay 

• Shark Bay 

• Māhanga Bay 

208g-1 ± 131 (SE) 
625g-1 ± 149 (SE) 
1001g-1 ± 73 (SE) 

1894g-1 ± 397 (SE) 

NA NA NA Parry et al. (2023) 

Pipi (Paphies australis) 

Wedge shell (Macomona liliana) 
Cockle (Austrovenus stutchburyi) 

•  Mangawhai 

•  Te Haumi 

•  Onerahi 

Northland 
3 locations 

NA NA 

0.6 ± 0.35 (SD) 
1.5 ± 1.70 (SD) 

 
2.6 ± 2.37 (SD) 
2.0 ± 1.49 (SD) 
1.2 ± 1.74 (SD) 

NA 
2.3 ± 1.60 (SD) 

 
3.2 ± 2.23 (SD) 
2.4 ± 1.32 (SD) 
2.4 ± 1.78 (SD) 

ESR & NRC 
(unpublished data) 

 

Bivalves 
Cockle (Austrovenus stutchburyi) 
Wedge shell (M. liliana) 

Tuatua (Paphies subtriangulata) 

BOP: 29 locations 

•  Tauranga Harbour  

•  Ōhiwa Harbour 

•  Eastern coastline 

Wet weight 
Range: 0.07–1.2g-1 

Range: 0.1–1g-1 

Range: 0.03–0.23g-1 

NA NA NA Lewis (2021) 

Mediterranean mussel 
(Mytilus galloprovincialis) 

Wellington Harbour 
3 sites 

Wet weight 
0.30g-1 ± 0.04 (SE) 

NA NA NA Shannon (2020) 

Green-lipped mussels 
(Perna canaliculus) 

NZ: 9 locations 

• Bay of Islands 

• Mt Maunganui 

• New Plymouth 

• Napier 

• Wellington Harbour 

• Port Underwood 

• Westport 

• Avon-Heathcote 

• Dunedin 

 
0 

0.03g-1 
0.06g-1 

ND 
0.01g-1 

ND 
0.01g-1 
0.16g-1 
0.04g-1 

NA 

 
ND 
0.3 
0.3 
ND 
0.2 
ND 
0.2 
0.5 
0.7 

NA Webb et al. (2019) 
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Species Location 
Particles  

(dry weight) 
PIR (%) AP PL References 

Green-lipped mussels 
(Perna canaliculus) 

NZ: local supermarkets 14 x 100g-1 NA NA NA Mazlan et al. (2022) 

Vertebrates (fish) 

Marine species 
Parore (Girella tricuspidata) (20) 
Leatherjacket (Meuschenia scaber) (19) 

Yellowtail kingfish (Seriola lalandi) (15) 

Grey mullet (Mugil cephalus) (22) 
Tarakihi (Nemadactylus macropterus) (23) 

Australasian snapper (Pagrus auratus) (22) 

Blue fin gurnard (Chelidonichthys kumu) (27) 

Y.t. jack mackerel (Trachurus novaezelandiae) (31) 

NZ 
Auckland fish market 

 
NA 

15.8% 
70% 

36.8% 
20% 

13.6% 
8.7% 
4.5% 
3.7% 
3.2% 

 
NA 

3.6 ± 0.7 (SE) 
5.9 ± 1.3 (SE) 
2.0 ± 0.5 (SE) 
1.0 ± 0.0 (SE) 
2.0 ± 0.6 (SE) 
3.5 ± 0.5 (SE) 
1.0 ± 0.0 (SE) 
2.0 ± 0.0 (SE) 
1.0 ± 0.0 (SE) 

Markic et al. (2018) 

Marine species (6 species) 
Yellowbelly flounder (Rhombosolea leporine)  

Red gurnard (Chelidonichthys kumu) 

Pilchard (Sardinops sagax) 

Hauraki Gulf 
11 locations 

NA 23% 1.73 0.397  Shetty (2020) 

Hoki 
(Macruronus navaezelandiae) 

West Coast 
Cook Strait 

NA NA 
4.25 
6.9 

NA Rotman (2020) 

Greenback horse mackerel 
(Trachurus declivis) (25) 

Auckland  
Hauraki Gulf 

NA 4% 0.4 
Only 1 individual had 
plastics in stomach 

Jawab et al. (2021) 

Benthic and pelagic marine fish (155) 
Benthic (7 species) 
Pelagic (3 species) 

Otago 
Southland 

NA 
 

78.2% 
72.2% 

 
2.7 ± 0.3 (SE) 
2.1 ± 2.9 (SE) 

 
3.4 ± 0.3 (SE) 
2.9 ± 0.4 (SE) 

Clere et al. (2022) 

Marine migratory species 
Mako shark (Isurus oxyrinchus) (993) 
Porbeagle shark (Lamna nasus) (1,489) 
Blue shark (Prionace glauca) (8584) 
Lgs. lancetfish (Alepisaurus ferox) (849) 

Shs. lancetfish (A. brevirostris) (381) 

Moonfish (Lampris guttatus) (1,565) 

Kingfish (Seriola lalandi) (5) 

Ray’s bream (Brama sp.) (1,560) 

Butterfly tuna (G. melampus) (949) 
Albacore (Thunnus alalunga) (694) 

New Zealand Exclusive 
Economic Zone 

NA 

All litter material 

0.4% 
0.2% 
0.3% 
1.2% 
0.3% 

18.4% 
20% 
0.3% 
0.5% 
0.1% 

NA NA 
Horn et al. (2013  

and 2021) 
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Species Location 
Particles  

(dry weight) 
PIR (%) AP PL References 

Yellowfin tuna (T. albacares) (967) 
Sth. bluefin tuna (T. maccoyii) (9,966) 
Bigeye tuna (T. obesus) (1169) 

Pac. bluefin tuna (T. orientalis) (47) 

Swordfish (Xiphias gladius) (3,494) 
Striped marlin (Kajikia audax) (20) 

0.3% 
0.6% 
0.2% 
2.1% 
0.1% 
5.0% 

Tarakihi 
(Nemadactylus macropterus) (3) 

NZ  
Local supermarkets 

20 x 100g-1 NA NA NA Mazlan et al. (2022) 

Vertebrates (marine mammals) 

Bryde’s whales 
(Balaenoptera brydei) (18 scat samples) 
 

Sei whales 
(Balaenoptera borealis) (3 scat samples) 

Auckland  
coastal waters 

5g–1 
 

NA 

Exposure: 24,028 
MPs (>150μm) 
per mouthful 
when feeding 

NA Zantis et al. (2022) 

Common dolphins 
(Delphinus delphis) (15) 

 

Northland 
Auckland 

Wairarapa 
Wellington 

Marlborough Sounds 

NA NA 7.8 MP ± 1.4 (SE) 7.8 MP ± 1.4 (SE) Stockin et al. (2021) 

 



APPENDIX 5 
Characteristics of microplastics (percentage of type, size, polymer morphotype, and colours) documented in 
various New Zealand ecosystems across different locations.  
Note: * = not provided. Abbreviations: acrylonitrile butadiene styrene (ABS); cellulose and regenerated cellulose 
(cotton, rayon or cellophane) (C & CR); polyamide/nylon (PA); polyacrylonitrile (PAN); polybutadiene 
acrylonitrile (PBAN); polyethylene (PE); polyethylene glycol (PEG); poly(ethylene terephthalate) (PET); 
poly(methyl methacrylate) (PMMA); polystyrene (PS); polyurethane (PU); polyvinyl alcohol (PVA); 
polyvinylchloride (PVC); not assessed or not publicly available (NA). 

Location  
Microplastic types 

and size 
Polymer 

morphotype 
Colour(s) References 

Sediments  

Northland 
11 locations, 22 sites 
 

• Rarawa 

• Waipapakauri 

• Ahipara 

• Taharoa 

• Ōmāmari 

• Glinks Gully 

• Paihia 

• Sandy Bay 

• Onerahi 

• Waipu Cove 

• Mangawhai 

Type 
Fibres (50%) 

Fragments (36%) 
Films (14%) 

 

Size 
< 25μm 

50–100μm 

C&CR (44%) 
PE (23%) 
PP (18%) 
PET (8%) 
PS (1%) 

Other (6%) 

NA 
De Lena et al. 

(2021) 

Auckland 
39 sites 
 

• Waitematā 

• Hauraki 

• Tamaki 

• Manukau 

• Tasman 
 

Type 
Fibres (88%) 

Fragments (8%) 
Films (4%) 

 

Size 
300–500μm (39%) 

500–1,000μm (35%) 
1,000–5,000μm (21%) 

< 300μm (4%) 

CR  (34%) 
PET (22%) 
PE (15%) 
PP (4%) 
PU (4%) 

Colourless 
White 
Black 

Bridson et al. 
(2020) 

Auckland 
18 locations, 21 sites 

Type 
Fragments (79%) 

Fibres (20%) 
 

Size 
63–500μm 

500–1,000μm 
1,000–5,000μm 

NA NA 
Dikareva & Simon 

(2019) 

Auckland 
22 sites  
 

• Waitematā 
Harbour 

 

Type 
Fibres (48%) 

Fragments (46%) 
 

Size 
1–5mm (30%) 

201–400μm (25%) 

PP (34%) 
PET (18%) 
PE (11%) 

Blue (15%) 
Green (12%) 
Black (9%) 

Hope et al. (2021) 

Bay of Plenty 
29 locations 
 

• Tauranga 
Harbour 

• Ōhiwa Harbour 

• Eastern coastline 
 

Type 
Fibres (75%) 

Fragments (23%) 
Films (2%) 

 

Size (NA) 

 
C & CR (40%) 

PVC (13%) 
PA (10%) 

Inorganic (37%) 

NA Lewis (2021) 

Wellington 
Harbour 
3 sites 

Type 
Fibres (90%) 

Fragments (9%) 
NA 

Black (47%) 
Blue (40%) 

Colourless (4%) 

Shannon (2020) 
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Size 

1–2mm (45%) 
< 1mm (30%) 
2–5mm (25%) 

White (3%) 
Red (3%) 

Green (1%) 
Orange (1%) 
Yellow (1%) 
Purple (1%) 

Canterbury 
10 sites 

Type 
Fragments (86%) 

Pellets (11%) 
 

Size 
2–5mm (59%) 
1–2mm (25%) 
< 1mm (16%) 

PS (55%) 
PE (21%) 
PP (11%) 

 

White (67%) 
Clear (10%) 
Blue (8%) 

Red (5.5%) 
Green (5.5%) 

Yellow/orange (3%) 
Brown (1%) 

Clunie-Ross et al. 
(2016) 

Canterbury 
30 sites 

 

• Avon/Ōtākaro 
River 

• Upper reach 

• Middle reach 

• Lower reach 
 

Type 
Fragments (47%) 

Fibres (35%) 
Foams (10%) 
Pellets (8%) 

 

Size 
100–300µm (43%) 

500–1000µm (30%) 
30–100µm (18%) 
300–500µm (8%) 

PET (21%) 
PP (17%) 
PS (16%) 
PE (7%) 

Nylon (7%) 

Red (27%) 
Blue (26%) 

White (21%) 
Black (19%) 
Green (2%) 

Orange (2%) 
Yellow (2%) 

Phillips (2020) 

Marlborough 
Queen Charlotte 
Sound 
2 sites 
 

• Marine reserve 

 

Type 
Fibres 

Fragments 
Filaments 

 

Size NA 
NA 

 
Red (56%) 

Transparent (>15%) 
Blue (~11%) 
Black (~10%) 

Ribó et al. (2021) 

• Anchorage 

Type 
Fragments 

Fibres 
Filaments 

 

Size NA 

 
Blue (~45%) 
Red (~30%) 
Black (15%) 

Stormwater drain 
sediments 

 

Canterbury 
Avon/Ōtākaro River 
 

• Upper reach 

• Middle reach 

• Lower reach 

Type 
Fragments (66%) 

Fibres (26%) 
Pellets (8%) 

 

Size 
500–1000µm (34%) 

30–100µm (24%) 
1000–5000µm (18%) 

300–500µm (14%) 
100–300µm (10%) 

 
 

Nylon (16%) 
Rubber (12%) 

PP (12%) 
PE (10%) 
PC (8%) 
PET (6%) 

 
 

White (20%) 
Green (18%) 
Black (14%) 
Blue (12%) 

Yellow (12%) 
Red (10%) 

Orange (10%) 

Phillips (2020) 

Wastewater 
treatment effluents 

 

Canterbury 
 

• Christchurch 

• Kaiapoi 

• Lyttelton 

Type 
Fragments (58%) 

Fibres (35%) 
Films (7%) 

 

Size 
> 300–1000μm (61%) 

0–300μm (23%) 
1000–5000μm (16%) 

PET (26%) 
PE (22%) 
PP (15%) 

NA 
Ruffell et al. 

(2021) 
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Freshwater streams  

Auckland 
18 locations, 21 sites 

Type 
Fragments (39%) 

Fibres (34%) 
 

Size 
63–500μm 

500–1,000μm 
1,000–5,000μm 

NA 

Transparent/white 
Yellow 
Black 
Blue 

Green 

Dikareva & Simon 
(2019) 

Auckland 
Hamilton 
Wellington 
Christchurch 
Dunedin 
52 sites 

Type 
Polystyrene (51%) 

Fibres (33%) 
Fragments (15%) 

Beads (< 1%) 
 

Size 
250–500μm (43%) 

500–1,000μm (35%) 
1,000–5,000μm (22%) 

NA NA 
Mora-Teddy et al. 

(2019) 

Marine waters  

Northland 
7 sites 

Type 
Fibre (60%) 

Fragment (35%) 
Fibre bundle (3%) 

Film (1%) 
 

Size NA 

PET (42%) 
PE (15%) 
PP (14%) 

Acrylic (10%) 
PA (7%) 

PVC (2%) 
Other (10%) 

Black (28%) 
Blue (21%) 
Clear (20%) 
Green (7%) 

Orange (6%) 
White (5%) 
Grey (3%) 

Multicoloured (3%) 
Yellow (3%) 

Red (2%) 
Purple (1%) 

AIM2/Blue 
Cradle/ESR 

(Unpublished 
data) 

Wellington 
Harbour 
3 sites 

Type 
Fibres (94%) 

Fragments (5%) 
 

Size 
1–2mm (42%) 
2–5mm (31%) 
< 1mm (27%) 

NA 

Black (48%) 
Blue (27%) 

Colourless (8%) 
Red (7%) 

Green (3%) 
Orange (3%) 
White (2%) 
Yellow (2%) 
Purple (1%) 

Shannon (2020) 

 

 

 
 
 



APPENDIX 6 
Mean abundance of microplastics (by volume or weight) documented in various New Zealand ecosystems 
across different locations.  
Note: In bracket (site number, n). WW: Wet weight, otherwise data are provided as dry weight; (*) A range is 
given from the different sites as low, mid and high concentrations for comparative purposes; ** Data for north 
sites during summer only. For a list of all sites, please refer to the reference.  
Abbreviations: acrylonitrile butadiene styrene (ABS); cellulose and regenerated cellulose (cotton, rayon or 
cellophane) (C & CR); polyamide/nylon (PA); polyacrylonitrile (PAN); polybutadiene acrylonitrile (PBAN); 
polyethylene (PE); polyethylene glycol (PEG); poly(ethylene terephthalate) (PET); poly(methyl methacrylate) 
(PMMA); polystyrene (PS); polyurethane (PU); polyvinyl alcohol (PVA); polyvinylchloride (PVC); not assessed or 
not publicly available (NA); not detected (ND); standard deviation (SD); standard error (SE).  

Region Location Mean abundance 
(MPs m-2 ; cm-3; L-1) 

Mean abundance 
(MPs g-1; kg-1) 

Reference 

Sediments 

Northland 
11 locations 
22 sites  

• Ahipara (12) 

• Glinks Gully (16) 

• Mangawhai (12) 

• Ōmāmari (16) 

• Onerahi (16) 

• Paihia (12) 

• Rarawa (12) 

• Sandy Bay (12) 

• Taharoa (12) 

• Waipapakauri (16) 

• Waipu (12) 

56m-2 ± 98 (SD) ** 
107m-2 ± 98 (SD) ** 

486m-2 ± 275 (SD) ** 
217m-2 ± 82 (SD) ** 

ND 
88m-2 ± 150 (SD) ** 

182m-2 ± 178 (SD) ** 
629m-2 ± 762 (SD)** 
68m-2 ± 118 (SD) ** 

256m-2 ± 205 (SD) ** 
 56m-2 ± 98 (SD) ** 

2.71kg-1 ± 4.32 (SD) 
2.50kg-1 ± 4.00 (SD) 
6.66kg-1 ± 3.59 (SD) 
4.21kg-1 ± 6.17 (SD) 
0.31kg-1 ± 0.85 (SD) 
2.92kg-1 ± 2.57 (SD) 
2.25kg-1 ± 2.20 (SD) 
6.46kg-1 ± 6.16 (SD) 
0.63kg-1 ± 1.13 (SD) 
3.75kg-1 ± 2.89 (SD) 
4.17kg-1 ± 5.96 (SD) 

De Lena et al. 
(2021) 

Auckland 
 

18 locations 
21 sites 

ND Range: 9-80kg-1 
Dikareva & 

Simon (2019) 

Auckland East coast 245m-2 ± 251 (SD) NA 
Bridson et al. 

(2020) 

Auckland West coast 900m-2 ± 820 (SD) NA 
Bridson et al. 

(2020) 

Auckland (east) 

Waitematā Harbour 
(19*) 

• Hobson Bay 

• Kotukutuku Inlet 

• Stanley Bay 

• Timothy Place 

• Point Chevalier Beach 

312m-2 ± 295 (SD) 
ND 

75m-2 ± 107 (SD) 
21m-2 ± 175 (SD) 

411m-2 ± 175 (SD) 
873m-2 ± 374 (SD) 

NA 
Bridson et al. 

(2020) 

Auckland (east) 

Hauraki Gulf (14*) 

• Surfdale Beach 

• Ōrewa Beach 

• Takapuna Beach 

• Saint Heliers Bay 

• Ōmana Beach 

177m-2 ± 194 (SD) 
ND 

81m-2 ± 114 (SD) 
292m-2 ± 127 (SD) 
369m-2 ± 161 (SD) 
671m-2 ± 183 (SD) 

NA 
Bridson et al. 

(2020) 

Auckland (east) 

Tāmaki Estuary (4*) 

• Tiraumea Drive 

• Bucklands Beach 

162m-2 ± 108 (SD) 
205m-2 ± 167 (SD) 
230m-2 ± 163 (SD) 

NA 
Bridson et al. 

(2020) 

Auckland (west) 

Manukau Harbour (11*) 

• Green Bay 

• Kauritutahi Beach 

• Clarks Beach 

• Māngere WWTP 

• Cornwallis Beach 

896m-2 ± 886 (SD) 
51m-2 ± 72 (SD) 

275m-2 ± 227 (SD) 
720m-2 ± 353 (SD) 

1645m-2 ± 366 (SD) 
2615m-2 ± 1129 (SD) 

NA 
Bridson et al. 

(2020) 

Auckland (west) 

Tasman Ocean (7*) 

• Hamiltons Gap 

• Piha Beach 

• Karioitahi Beach 

907m-2 ± 773 (SD) 
197m-2 ± 279 (SD) 

1204m-2 ± 178 (SD) 
1753m-2 ± 824 (SD) 

NA 
Bridson et al. 

(2020) 
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Region Location Mean abundance 
(MPs m-2 ; cm-3; L-1) 

Mean abundance 
(MPs g-1; kg-1) 

Reference 

Bay of Plenty  

• Eastern coastline  

• Tauranga Harbour  

• Ōhiwa Harbour  

• Karewa Parade  

• Papamoa Domain  

• Omanu Sewage 
Outfall  

• Ohope Beach  

• Matakana Island  

2066.9m-2 
571.2m-2 
477.7m-2 
11087m-2 
3343.9m-2 
2800.2m-2 
2487.3m-2 

63.5m-2 

NA 
NA 
NA 

157.1kg-1 
49.1kg-1 

44.7kg-1 
28.2kg-1 

1kg-1 

Lewis (2021) 

Wellington 
Wellington Harbour 
3 sites 

NA 
124.9kg-1 ± 35.7 (SE) 

(WW) 
Shannon (2020) 

Canterbury 

Exposed beach area (5*) 

• Clifton Beach 

• South New Brighton 

• New Brighton 

 
175m-2 ± 151 (SD) 

1552m-2 ± 695 (SD) 
1748m-2 ± 609 (SD) 

NA 
Clunies-Ross et 

al. (2016) 

Canterbury 

Harbour area (3) 

• Governors Bay 

• Corsair Bay 

• Akaroa Harbour 

 
ND 

265m-2 ± 3 (SD) 
353m-2 ± 407 (SD) 

NA 
Clunies-Ross et 

al. (2016) 

Canterbury 

Estuarine area (2) 

• Avon River mouth 

• Heathcote River 
mouth 

 
ND 

178m-2 ± 154 (SD) 
NA 

Clunies-Ross et 
al. (2016) 

Canterbury 

Avon/Ōtākaro River (6) 

• Upper reach 

• Middle reach 

• Lower reach 

NA 
5.2 x 100g-1 

Range: 0–35 x 100g-1 
Phillips (2020) 

Marlborough 
Queen Charlotte 
Sound 

 

Marine reserve (11 
depths) 

• Lowest 

• Highest 
Anchorage (10 depths) 

• Lowest 

• Highest 

(Depth range inside brackets) 

2cm-3 (2.5–5cm) 
26cm-3 (30–35cm) 

 
3cm-3 (15–25cm, 30–35cm) 

22cm-3 (0–2.5cm) 

NA 
Ribó et al. 

(2021) 

Stormwater drain sediments 

Canterbury 

Avon/Ōtākaro River (6) 
 

• Upper reach 

• Middle reach 

• Lower reach 

NA 

3.3 x 100g-1 

Range: 0–8 x 100g-1 
3.8 x 100g-1 

5 x 100g-1 

1.2 x 100g-1 

Phillips (2020) 

Wastewater effluents 

Canterbury 

Region 

• Christchurch 

• Kaiapoi 

• Lyttelton 

1.3 L-1 ± 0.6 
1.2 L-1 ± 0.5 
0.8 L-1 ± 0.4 
1.8 L-1 ± 0.4 

NA 
Ruffell et al. 

(2021) 

Freshwater streams 

Auckland 
18 locations 
21 sites 

Range: 17–303m-3 NA 
Dikareva & 

Simon (2019) 

Across NZ 
52 sites 

NZ 
Auckland (*) 

• Papakura Stream 

• Waimahia Stream 
Waikato(*) 

• Tuhikaramea Stream 

• Waitawhiriwhiri 
Stream 

Range: < 1–44.8m-3 
 

7.3m-3 

2.1m-3 

 

44.8m-3 
5.1m-3 

 
8.3m-3 

NA 
Mora-Teddy et 

al. (2019) 
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Region Location Mean abundance 
(MPs m-2 ; cm-3; L-1) 

Mean abundance 
(MPs g-1; kg-1) 

Reference 

Wellington (*) 

• Waiwhetu Stream 

• Porirua Stream 
Christchurch (*) 

• Heathcote River 
Dunedin (*) 

• No site in top 16 

1.8m-3 

 

 

2.7m-3 

 

NA 

Marine waters 

Northland 
3 main locations 
7 sites 

Bay of Islands area (3) 

• Inner 

• Outer 

• Offshore 
Matapōuri Bay (1) 

• Mid 
Whangārei area (3) 

• Inner 

• Outside heads 

• Offshore 

 
0.17m-3 

0.05m-3 

0.08m-3 

 

0.04m-3 

 

0.06m-3 

0.12m-3 

0.02m-3 

NA 

AIM2/Blue 
Cradle/ESR 

(Unpublished 
data) 

Wellington Wellington Harbour (3) 59.5 x 200m-1± 23.8 (SE) NA Shannon (2020) 

 

APPENDIX 7 
Number of particles, type, and polymer morphotype of microplastics found in various foods (other than animals) 
available in New Zealand. 

Food item Location 
Number of 

particles 

Type 
Polymer 

morphotype 
References 

Sea salt 
NZ  

Local supermarkets 
10 x 100g-1 

Fragments (67%)  
Fibres (16.5%) 
Beads (16.5%) 

 
PP 

Mazlan et al. (2022) 

Tap water NZ  1 x 100g-1 

Fragments (50%) 
Fibres (50%) 

 
PET 

Mazlan et al. (2022) 

Bottled water 
NZ  

Local supermarkets 
4 x 100g-1 

Fibres (56%) 
Fragments (33%) 

Beads (11%) 
 

PE 
PP 

Mazlan et al. (2022) 
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