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Executive summary

The National Policy Statement for Freshwater Management 2020 (NPS-FM) requires regional councils
to assess stream water quality and ecosystem health by monitoring a range of freshwater attributes,
including macroinvertebrates. The macroinvertebrate attribute is represented by three numeric
attribute units: the Quantitative Macroinvertebrate Community Index (QMClI), the
Macroinvertebrate Community Index (MCI), and the Average Score Per Metric (ASPM). If metric
values are below a national bottom line for the attribute, the NPS-FM requires the regional council to
develop an action plan to identify key stressors and attempt to improve macroinvertebrate
communities.

Identifying key stressors of macroinvertebrate communities is a significant challenge. Streams are
influenced by a wide range of multiple, often correlated, stressors which can have direct and indirect
effects on macroinvertebrates. Potential stressors include dissolved nutrients, conductivity, dissolved
oxygen, and temperature, substrate (particularly fine sediments), channel morphology and instream
habitat, riparian condition, and altered flow regimes. Two stressors of particular concern to
Northland Regional Council (NRC) are in-stream nutrient concentrations and drought.

Nutrients are a concern because many of NRC’s State of the Environment (SoE) monitoring sites meet
both the nutrient toxicity attribute criteria in the NPS-FM and more stringent national nutrient
criteria that were recently derived utilising assessments of macroinvertebrate community state
(Canning et al. 2021) but still fail to meet macroinvertebrate bottom lines. Therefore, NRC wishes to
assess whether national criteria are stringent enough to protect macroinvertebrate communities
within its region. Northland has also experienced three drought periods over the past eight years. A
previous analysis of drought impacts on macroinvertebrate communities in the region reported
correlations between macroinvertebrate metrics and drought in multiple sites but did not investigate
potential causal mechanisms such as indirect effects of drought on other environmental drivers
(Death et al. 2020).

The objectives of this project were threefold:

1. toinvestigate the applicability of the national nutrient criteria from Canning et al. (2021)
for Northland, and

2. toidentify other potential drivers apart from nutrients, including water quality, sediment,
algae, and flow, that could be acting as stressors on macroinvertebrate communities, and
to compare macroinvertebrate community turnover within and between SoE sites,

3. toidentify drought effects on macroinvertebrate community composition and on other
potential drivers of community composition.

Objective 1: Nutrient criteria

Are the critical values in Canning et al. (2021) for DIN and DRP sufficient to maintain the NPSFM
macroinvertebrate attributes above the national bottom line in Northland rivers?

We repeated the minimisation of mismatch (MoM) analysis from Canning et al. (2021) using
Northland SoE data rather than the national dataset to derive Northland-specific nutrient criteria for
dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), ammoniacal nitrogen (N),
nitrate nitrogen (NOs-N), and Total Kjeldahl’s nitrogen (TKN) with NPS-FM ‘national bottom lines’ for
macroinvertebrate attributes (MCI, QMCI, ASPM) as ecological metric targets. The MoM algorithm

8 Drivers of macroinvertebrate communities in Northland streams



aims to find a threshold that balances two sets of monitoring records - (a) records with ecological
states at or above the target, but with poor nutrient status, and (b) records with ecological states
below the target, but with good nutrient status (for this analysis threshold for ecological state is the
NPS-FM national bottom line). These two sets of records may be viewed, respectively, as sites that
are relatively “over-protected” by the nutrient threshold, given the ecological target, and sites that
are relatively “under-protected” by the nutrient threshold, given the ecological target. The
intersection point between these two sets of records determines the nutrient threshold at which
mismatch is minimised to protect the ecological target state.

To use the MoM algorithm for setting nutrient thresholds, we make certain assumptions about the
distributions and relationships of the ecological and nutrient data. The Northland macroinvertebrate
and nutrient datasets met some, but not all, of these assumptions. In particular, the distribution of
data was uneven, with many sites on the low end of the range in macroinvertebrate metric scores.
There were also few significant relationships between macroinvertebrate metrics and nutrients
across all sites.

The Northland-derived nutrient criteria for both DIN and DRP were substantially lower than the
nationally derived criteria; DIN by an order of magnitude and DRP by approximately half (Table 1-1).
However, given that the Northland data did not meet all the MoM assumptions and that GAMM
modelling also indicated that nutrients were not key drivers across all sites, it would be useful to
undertake further investigation of the role of nutrients in impacting macroinvertebrate communities
before large effort or expense was undertaken in reducing nutrient concentrations to below the
criteria identified here. Observed relationships with nutrients may be due to another correlated
environmental driver.

Table 1-1:  Nutrient criteria for Northland. Median and (range) of nutrient criteria developed for Northland
compared to national criteria from Canning et al. (2021) for DIN and DRP. The minimisation of mismatch
analysis was unable to identify DIN criteria for QMCI or NOs-N criteria for QMCI or ASPM.

Nutrient MClI Qmcl ASPM
Northland

Amm-N 0.0087 (0.0062 —0.0111) 0.0062 (0.0041 - 0.0078) 0.0066 (0.0050 — 0.0091)
TKN 0.1704 (0.1457 — 0.1951) 0.1442 (0.1210-0.1627) 0.1503 (0.1256 —0.1719)
NOs-N 0.1009 (0.036 —0.1821)

DIN 0.11 (0.05-0.18) 0.06 (0.01-0.12)
DRP 0.01 (0.009 — 0.014) 0.01 (0.007 - 0.012) 0.01 (0.007 — 0.013)
National

(from Canning et al. 2021)
DIN 1.07 (0.93 - 1.21) 0.63 (0.45-0.77) 1.12 (1.01-1.29)
DRP 0.028 (0.025 — 0.03) 0.018 (0.015 — 0.02) 0.028 (0.026 —0.032)

Are there differences among land use (i.e., predominately pasture, forest, or urban) and geology
classes that may affect the applicability of these nutrient criteria?

Both nutrient concentrations and macroinvertebrate metrics varied between streams with different
catchment land use. Pastoral and urban streams exceeded the Northland nutrient criteria for all
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forms of nitrogen, while indigenous forest streams were below the Northland nutrient criteria for all
forms of nitrogen. Hard- and soft-bottomed streams were both evenly split between exceeding and
meeting nutrient criteria for NOs, and DIN. More soft-bottomed streams exceeded criteria for
ammoniacal N and TKN, perhaps due to poorly drained soils in low-lying floodplains. Sites in all land
use and stream type categories exceeded the Northland criteria for DRP. However, DRP
concentrations were equally high across land use types, including indigenous forest sites, suggesting
the DRP was primarily associated with the volcanic substrates common in Northland, rather than any
anthropogenic impact.

Objective 2: Drivers of macroinvertebrate communities and community turnover

What are the predictors of macroinvertebrate community composition in Northland rivers and
streams?

We used a full subsets approach to identify other potential drivers of macroinvertebrate community
composition in addition to nutrients. Data for a large number of potential drivers or predictors of
macroinvertebrate community composition were available (n = 152) across 66 sites over 8 years
(although individual predictors varied in the number of sites and time window over which data was
available). Generalized additive mixed models (GAMMs) were fit for invertebrate metrics MCl, QMClI,
ASPM, and percent EPT taxa and percent EPT abundance, with site as a random effect. A complete
set of possible models was created using all combinations of predictor variables. Predictor variables
were chosen to represent key stressors on stream ecosystems: nutrients and other water chemistry,
flow regimes, habitat and drought (Table 1-2). Spatial attributes (e.g. elevation, slope, catchment
area, rainfall) from the River Environment Classification (REC, version 2.5) were also included. The
relative importance of predictor variables was assessed by summing the AlCc (Akaike Information
Criterion) weights for all models containing each variable, while the best model was selected based
on the lowest AlCc and least number of predictor variables.

Models were fit to the full site by year dataset (time series models) and to selected subsets of the
data, including pastoral and indigenous forest streams (urban and exotic forestry sites were excluded
due to the low number of sites within each subset (2 and 3, respectively). Models were also fit using
the site median values for drivers and metrics (spatial models) to include additional drivers missing
too many data points to be included in the time series analysis, such as periphyton percent cover and
chlorophyll a, and percent fine sediment cover.

Table 1-2: Potential drivers included in GAMM full subsets analysis.

Driver category Selected predictors Model
Nutrients Ammoniacal N, TKN, DIN, DRP Time series, spatial
Other water quality Conductivity, dissolved oxygen, turbidity Time series, spatial
Periphyton and substrate Chlorophyll a, percent fine sediment cover Spatial
Habitat Riparian habitat assessment (RHA) score Spatial
Flow Median flow over previous 90 days, base flow index Time series, spatial
(BFI), days since flow 3 times the long-term median
flow (daFRE3)
Drought New Zealand drought index (NZDI) Time series

10 Drivers of macroinvertebrate communities in Northland streams



Driver category Selected predictors Model

Spatial attributes Elevation, slope, catchment area, variation in rainfall, Time series, spatial
from REC number of rain days > 10mm, mean air temperature,
particle size

Apart from nutrients, the key drivers of Northland macroinvertebrate communities identified by the
GAMM analyses were river flow metrics, instream habitat condition, climate (such as temperature,
rainfall pattern) and topography (Table 1-3). However, this varied between macroinvertebrate
metrics as well as catchments across the region.

In particular, macroinvertebrate communities in pastoral streams were associated with different
drivers than those in indigenous forest streams. Somewhat surprisingly, there were no notable
differences in predictor importance between hard- and soft-bottomed streams, even though
differences in MCl scores between the two groups indicate very different macroinvertebrate
communities. Some drivers were also more important for one metric than others. In general, MCl,
QMCI, and ASPM had stronger associations with drivers than EPT metrics. Overall, environmental
drivers explained a greater proportion of variation in macroinvertebrate community metrics between
sites than within sites over time.

Table 1-3:  Selected predictors from most parsimonious models for MCI, QMCI, and ASPM.

Response Dataset Top predictors

Time series

MCI All sites DIN, conductivity, DO, BFI, NZDI
Pastoral BFI, DIN, NZDI, Reporting Year, elevation
Indigenous DO, flow, turbidity
Forest

QMmcl All sites Flow, mean air temperature, particle size, turbidity, slope
Pastoral BFI, Reporting Year
Indigenous Particle size, turbidity
Forest

ASPM All sites BFI, DO, NZDI, rain days > 10 mm, slope
Pastoral NZDI, Reporting Year, rain days > 10 mm
Indigenous DO, turbidity
Forest
Spatial

MClI DIN, % sand-silt, temperature

QMmCl DRP, temperature

ASPM Conductivity, daFRE3, DO, Temperature
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How does the community composition (temporal species turnover) of MCI scoring taxa change within
and among the SoE sites?

Temporal community turnover is the replacement of species over time. Replacement of sensitive
taxa such as EPT with less sensitive taxa can be an indication of ecological impairment. Thus, we
calculated community turnover to investigate whether sites below the national bottom line for
macroinvertebrate metrics had greater displacement of EPT taxa than higher-scoring sites. Turnover
was calculated as the percentage of taxa appearing and disappearing each year within a site.
Turnover was highly variable within and between sites and did not vary regularly with catchment
land use or stream type. The largest contributors to total turnover were common taxa found across
many sites, rather than rare species. Taxa disappearances were greater than appearances in the year
following a drought in two out of three cases, suggesting that 1) there may be a lagged response to
drought and 2) it may take over a year for communities to fully recover. This pattern was observed
across all land use categories. However, the 2019-2020 drought was followed by a 1-in-100 year
flood event, which may have further impacted community recovery and extended the recovery time.
EPT taxa had comparable turnover rates to non-EPT taxa, suggesting that sensitivity to organic
pollution was not the main cause of turnover.

Objective 3: drought effects
How do drought conditions impact macroinvertebrate community composition in Northland?

We used linear mixed effects models to investigate direct effects of drought on invertebrate metrics,
with site as a random effect. There were significant negative relationships between the drought
index and all metrics, although inspection of individual site plots showed that the overall relationship
was driven by strong correlations in a small number of sites, with most sites showing no clear
relationship.

The influence of drought on macroinvertebrate communities was also tested by including drought as
a predictor in the full subsets analysis. Drought had high variable importance scores in models for
MCI and ASPM in pastoral streams and across all sites. The drought index also explained a large
amount of variation in macroinvertebrate communities in pastoral streams, which also had the
strongest associations with other environmental predictors, including temperature, baseflow and
water quality, and suggests that already stressed streams are more susceptible to drought effects
and/or that drought exacerbates the impact of other environmental stressors.

Do drought conditions impact water quality and environmental variables that may influence
macroinvertebrate community composition?

We also used linear mixed effects models, as described above, to investigate effects of drought on
other water quality and environmental variables. The drought index had significant relationships with
many of the other predictors, though again, overall relationships were primarily driven by strong
correlations in a subset of sites. The drought index was negatively related to ammoniacal N, TKN,
DIN, DRP, turbidity, temperature, and flow, and positively related to dissolved oxygen, chlorophyll a,
and daFRE3. The temporary improvements in water quality parameters (nutrients, clarity) were likely
associated with reduced surface runoff, or overland flow, in drought years. The positive relationships
with chlorophyll a and dissolved oxygen indicates increased aquatic plant growth and therefore
elevated photosynthesis rates, during drought conditions. Elevated photosynthesis is often
associated with oxygen depletion at night-time, suggesting increased stress on aquatic organisms
despite high dissolved oxygen levels in daytime when measurements were taken. The mix of positive
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and negative relationships with other drivers, each of which will in turn influence macroinvertebrate
community composition, highlights the complexity of disentangling the causal mechanisms by which
drought may impact stream macroinvertebrates.

Summary

The relationship between nutrients and macroinvertebrate communities is difficult to unravel in
Northland. The minimisation of mismatch approach resulted in very stringent nutrient criteria;
however, these criteria will have been influenced by the uneven distribution of the Northland data,
with all sites on the low end of the national range in nutrient concentrations and macroinvertebrate
metric scores. Given this influence, we do not recommend use of the newly derived nutrient criteria
until the role of nutrients in impacting macroinvertebrate communities in Northland streams has
been better quantified. The GAMM analysis showed that nutrients are unlikely to be the main
determinant of macroinvertebrate community composition when confounding factors (i.e., other
environmental drivers) are taken into account. While nutrients were important in pastoral streams,
several other predictors were also selected as important for explaining variation in
macroinvertebrate metrics across all streams: temperature, flow, drought index, and dissolved
oxygen.

To further understand the influence of nutrients and other drivers on macroinvertebrate
communities in Northland, we recommend: 1) investigation into whether the source of organic
nitrogen (TKN) is anthropogenic or natural, and whether correlated declines in macroinvertebrate
communities are associated with TKN itself, or other drivers which co-vary with TKN (i.e., sediment),
2) continued collection of sediment and periphyton data, as well as continuous temperature and
dissolved oxygen data, and re-running the drivers analysis when 5+ years of data is available, 3)
careful inspection of the suitability of models generated by the full subsets analysis for predicting
macroinvertebrate community composition, 4) incorporating species traits into the taxa turnover
analysis to investigate mechanisms of community compositional change in response to
environmental stressors, and 5) targeted monthly or bi-monthly macroinvertebrate sampling at a
subset of sites immediately following drought and flood events to determine community recovery
trajectories.

Drivers of macroinvertebrate communities in Northland streams 13



1 Introduction

1.1 Background

Regional Councils have statutory responsibilities to manage New Zealand’s waterways under the
Resource Management Act 1991 (RMA) and the National Policy Statement for Freshwater
Management 2020 (NPSFM 2020).

The NPS-FM requires regional councils to assess water quality and ecosystem health by monitoring a
range of freshwater attributes, including macroinvertebrates. The macroinvertebrate attribute is
represented by three attribute units: the Quantitative Macroinvertebrate Community Index (QMCI),
the Macroinvertebrate Community Index (MCl) (Stark and Maxted 2007) and Average Score Per
Metric (ASPM) (Collier 2008). Each attribute is graded into bands A through D, with band A indicating
expected values under nearly pristine conditions and the C/D band cut-off indicating a ‘national
bottom line’ below which values are indicative of degraded ecological state. If sites are below the
bottom line, the NPS-FM requires development of an action plan to identify key stressors and
attempt to improve macroinvertebrate communities.

Macroinvertebrate communities are influenced by a range of environmental stressors, or drivers.
Potential drivers include water quality parameters such as dissolved nutrients, conductivity,
dissolved oxygen, temperature, substrate cover (particularly fine sediments), channel morphology,
instream habitat, riparian condition, and altered flow regimes. These stressors can have direct as well
as indirect effects on macroinvertebrates and most freshwater ecosystems are subject to multiple
stressors at any given time. Surrounding topography, geology, and land use may also influence which
drivers have the largest effect on a given stream. Stream macroinvertebrate communities also vary
naturally between hard-bottomed and soft-bottomed streams. Thus, disentangling the impact of
individual stressors on macroinvertebrate communities is likely to be a significant challenge for
councils. Northland Regional Council (NRC) has identified two groups of drivers of particular concern
for the Northland region: nutrients and drought.

1.1.1 Nutrients

The NPS-FM requires councils to set nutrient criteria to achieve target attribute states for both
periphyton and macroinvertebrates. A recent analysis of Northland’s State of the Environment (SOE)
river monitoring sites found that the majority of SOE sites were within the NPS-FM band C or band D
for macroinvertebrate attributes (Death et al. 2020), despite nutrient attributes for the same sites
being in mostly above the national bottom line (Rissmann and Pearson, 2020). The majority of
Northland sites with poor macroinvertebrate scores also met recently published national nutrient
criteria for achieving macroinvertebrate targets for dissolved inorganic nitrogen (DIN) and dissolved
reactive phosphorus (DRP)(Canning et al. 2021). The suggested criteria were: ~0.6 mg/L for DIN and
~0.02 mg/L for DRP (Canning et al. 2021).

The first objective of this study was to investigate the applicability of the national nutrient criteria
from Canning et al. (2021) for Northland, specifically:

Are the critical values in Canning et al. (2021) for DIN and DRP sufficient to maintain the NPSFM
macroinvertebrate attributes above the national bottom line in Northland rivers?
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Are there differences among land use (i.e., predominately pasture, forest, or urban) and stream-bed
type (i.e., hard-bottomed and soft-bottomed streams) that may affect the applicability of these
nutrient criteria?

To test whether the minimisation of mismatch approach was applicable to Northland data (due to
the uneven distribution of sites with low nutrients above and below macroinvertebrate metric
bottom lines), we derived Northland-specific nutrient criteria for comparison with the national
criteria from Canning et al. (2021).

1.1.2 Drivers and community turnover

The second objective of this study was to investigate drivers of macroinvertebrate communities and
community turnover in Northland:

What are the predictors of macroinvertebrate community composition in Northland rivers and
streams?

The relative importance of potential drivers, including nutrients and drought, was assessed using
generalised additive mixed modelling (GAMM) with a full subsets approach. GAMMSs were used due
to their ability to model non-linear relationships between continuous predictor and response
variables, which are common in ecological datasets, and to include random effects to account for
spatial or temporal autocorrelation.

NRC was also interested to know how macroinvertebrate communities were changing over time (i.e.,
temporal species turnover) in their SOE monitoring sites:

How does the community composition (temporal species turnover) of MCl scoring taxa change within
and among the SoE sites?

Which taxa were lost or replaced the most?

Turnover was calculated as appearances and disappearances of taxa between years for all sites.

1.1.3 Drought

Northland has experienced two drought periods in recent years (2017, 2020) which may have
impacted macroinvertebrate communities via adverse effects on river flows. A preliminary analysis of
drought effects on Northland macroinvertebrate communities did not demonstrate any remarkable
change in macroinvertebrate communities in response to drought at most of the SOE sites (Death et
al. 2020). However, indirect effects of changes in flow under drought conditions via impacts on water
quality and other in-stream biophysical variables were not assessed.

The third objective of this study was to investigate drought impacts on macroinvertebrate
community composition as well as effects of drought on other potential drivers:

How do drought conditions impact macroinvertebrate community composition in Northland?

Do drought conditions impact water quality and environmental variables that may influence
macroinvertebrate community composition?

The relative importance of drought on macroinvertebrate community composition was assessed in
the GAMM analyses, along with other potential drivers. Drought effects on other drivers were
assessed individually using linear mixed effects models.
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1.2 Report roadmap

This report is structured into seven sections, including the introduction (Section 1):

Section 2 provides a description of data available at different sites and across varying temporal
periods and frequencies for macroinvertebrates, nutrients, drought and other potential drivers. A
summary of the collation of the data into a large dataset, separately delivered to NRC, is also
provided.

Section 3 describes the state of macroinvertebrate communities across NRC SoE monitoring sites
between 2014 and 2021 by comparing macroinvertebrate metric scores (MCl, QMCI, ASPM)
calculated using 1) NEMS tolerance values and 2) Northland-specific tolerance values to NPSFM
attribute bands.

Section 4 presents the statistical analysis, methods, results, and discussion of the development of
nutrient criteria specific to Northland using the minimisation of mismatch (MoM) method.

Section 5 presents statistical analysis, methods, results, and discussion of the analysis of potential
drivers, including drought, of macroinvertebrate communities.

Section 6 provides a summary of the community turnover analysis and discussion of observed
patterns in total turnover within and between sites and turnover of individual taxa.

Section 7 summarises overall conclusions and recommendations for future work.

Appendix A summarises the results of correlations between median macroinvertebrate metrics and
nutrient concentrations across all sites. The modelled versus observed hydrographs for the sites with
flow recorders are supplied in Appendix B. Pearson correlation plots and summary statistics between
potential drivers of macroinvertebrate communities are in Appendix C. Appendix D contains
temporal plots of multiple macroinvertebrate metric scores and the NZDI drought indicator for each
site. Temporal plots of potential drivers of macroinvertebrate community composition against the
NZDI drought indicator for all sites are provided in Appendix E. Summaries of the turnover of
individual macroinvertebrate taxa are in Appendix F. Appendix G contains barplots of the percentage
EPT and EPT taxa richness over time within all sites.
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2 Data

All data were collected by NRC as part of their State of the Environment (SoE) monitoring between
2014-2021. There were 66 sites monitored, although not all 66 sites were sampled for all parameters
each year (Figure 2-1, Table 2-7). Fifty-three of the sites were located in catchments with
predominately pastoral land use, eight were located in catchments with predominately indigenous
forest, three in catchments with exotic forestry, and two were located in urban catchments. Thirty-
nine of the sites are classified as “hard-bottomed’ and 27 as “soft-bottomed”, i.e., with a high
proportion of fine sediment on the stream-bed. All but one of the indigenous and exotic forest sites
were hard-bottomed, with one soft-bottomed stream in indigenous forest. The two urban streams
were also hard-bottomed. The pastoral streams were evenly split, with 27 hard-bottomed and 26
soft-bottomed.

2.1 Macroinvertebrates

The macroinvertebrate data consisted of taxa counts for the 66 sites sampled annually by NRC
between December and March from 2014-2021. Samples collected in December were assigned to
the following ‘Reporting Year’ in order to avoid splitting data from the same summer into separate
calendar years. For example, macroinvertebrate samples taken in December 2019, January 2020, and
February 2020 were all designated as Reporting Year 2020. Macroinvertebrate metrics were
calculated for each Reporting Year following NEMS (2022) methodology (see section 3.1). Not all sites
were sampled in all years (between 33 and 66 sites per year, Table 5-1).

Macroinvertebrate metrics were calculated for each reporting year following the methodology of the
National Environmental Monitoring Standards for macroinvertebrates (NEMS 2020) (Table 2-1).
Metrics were calculated using both the species tolerance values from the NEMs and Northland-
specific tolerance values from Stark (2017). MClyg tolerance values were used to calculate metrics in
sites identified as hard-bottomed by NRC, and MClsg tolerance values used in soft-bottomed sites.

Table 2-1:  Macroinvertebrate metric calculations. Adapted from NEMS (2020).

Metric Units Description Calculation
Macroinvertebrate A measure of stream health based on the MCT = =Y a; 20
Community Index tolerance of different macroinvertebrate taxa to Y X
(MClus, MClsg) organic pollution (Stark and Maxted 2007).

Where S = the total number of
scoring taxa in a sample and aj is the
tolerance score for the ith taxon.

Each species is assigned a tolerance score from 1
(very tolerant) to 10 (very sensitive). Tolerance
values differ for hard-bottomed (HB) and soft-
bottomed (SB) streams. Northland-specific
tolerance values have also been developed
(Stark 2017). MCl is calculated as the sum of
tolerance scores for all species in a site.

Quantitative Incorporates abundance of each taxa. MCT = éif(ni % ai)
Macroinvertebrate Q - N

Community Index
(QMClxe, QMClss) Where S = the total number of

scoring taxa in a sample, njis the
abundance of the ith scoring taxon,
aiis the tolerance score for the ith
taxa, and N = the total abundance
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Metric Units Description Calculation

for the scoring taxa for the entire

sample.

EPT Taxa Richness EPT (Ephemeroptera — mayflies, Plecoptera — Number of EPT taxa

stoneflies, and Trichoptera — caddisflies) are

groups known to be sensitive to organic

pollution. Caddisflies from the family

Hydroptilidae are excluded from EPT metric

calculations because they are pollution tolerant.
Percent % Number of EPT taxa
EPT Taxa Richness Total number of taxa
Percent % Number of EPT individuals
EPT Abundance Total number of individuals
Average Score A multi-metric index calculated as the mean of  Each metricis firstly scaled
Per Metric three metrics: MCI, EPT taxa richness, and (normalised) by:
(ASPM) percent EPT abundance (Collier 2008). X' = [X = Xpinl/ [Xmax — Xmin]

Where X’ is the scaled site score, X
is the raw site score, and Xmin and
Xmaxare: EPT taxa richness (0-29), %
EPT Abundance (0-100), MClI (0-
200).

2.2  Water quality

The water quality data consisted of monthly samples of 16 parameters from the 66 sites! collected by
Northland Regional Council between 2014 and 2021 (Table 2-2).

The monthly water quality data for each site was summarised over the twelve months prior to the
corresponding macroinvertebrate sampling date for each site to capture the effects of antecedent
conditions on macroinvertebrate communities (Table 2-2). A twelve-month period was chosen
because most macroinvertebrates spend at least a year as larvae in the aquatic environment, and
therefore changes in their community composition due to pollution tolerance levels or habitat
preferences will reflect changes in water quality and other environmental stressors over that year
(Stark and Maxted 2007). The summarised values were assigned the same Reporting Year as the
corresponding macroinvertebrate sample. For example, if the macroinvertebrate sample was
collected in January 2020, the summarised water quality data from January 2019-January 2020 was
designated as belonging to Reporting Year 2020.

If there was more than 20% missing data (i.e > 2 months) for a site in a given Reporting Year, that
Site-Reporting Year combination was excluded from the summary to avoid seasonal bias to annual
values (i.e., data only collected in summer, or no winter data collected; Figure 2-2). Censored values
reported as less than an analytical detection limit were replaced with half the detection limit, while

1 The original dataset had 71 sites. However, four sites were slight and/or temporary location shifts due to access issues; in these cases the
data was combined under the original site name. One additional site, the Utakura River at Horeke Road, was only sampled in 2014-2015
before the site was permanently moved to Okaka Road in 2016. As no invertebrate samples were collected from the Horeke Road site, it
was removed from the dataset.
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censored values greater than a detection or reporting limit were replaced with 1.1 times the limit
(Helsel 2005, 2012).
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Figure 2-1: Macroinvertebrate sampling sites in Northland.
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Table 2-2:  Water quality parameters measured monthly by NRC between 2014-2021. Summary statistics
were calculated over the year prior to the macroinvertebrate sample being taken.

Variable Units Summary statistics
Ammoniacal Nitrogen (Amm-N) g/m3 Median
Maximum
Black disc m Median
Dissolved Inorganic Nitrogen (DIN) g/m? Median

95t percentile
Conductivity ps/cm Median

Dissolved Reactive Phosphorus (DRP) g/m3 Median

95t percentile

Dissolved Oxygen (DO) mg/L Median
Minimum

Dissolved Oxygen % saturation (DO %) % Median
Minimum

Nitrate-Nitrogen (NOs-N) g/m3 Median

95t percentile

Nitrite-Nitrogen (NO2-N) g/m3 Median

95t percentile

Nitrite-Nitrate-Nitrogen (NO2-NOs-N) g/m3 Median

95t percentile

Temperature deg. C Median
(monthly spot measurements) 95t percentile
Total Kjeldahl Nitrogen (TKN) g/m3 Median

95t percentile

Total Nitrogen (TN) g/m3 Median

95t percentile

Total Phosphorus (TP) g/m?3 Median

95t percentile
Total suspended solids (TSS) g/m3 Median

Turbidity NTU Median
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2.3 Periphyton and substrate

The periphyton data consisted of monthly chlorophyll a samples and percentage cover visual
assessments from 45 sites collected by Northland Regional Council between 2014 and 2021 (Table
2-3). Three of the sites were not sampled for invertebrates and therefore were removed from the
dataset. Not every site was sampled each year (i.e., only 19 sites sampled in 2014, Figure 2-3).

To summarise percentage cover visual assessments of different periphyton types into a single
number the Weighted Composite Cover (WCC) of periphyton was calculated following Matheson
(2012):

% cover by mats
2

WCC = % cover by filaments +

The substrate data consisted of monthly measurements of percent cover by different particle classes
(bedrock, boulders, small and large cobbles, small and large gravels, sand, and silt) taken in
association with periphyton sampling from 34 sites in 2020 and 31 sites in 2021 (Table 2-3). Due to
the lack of temporal data, and because substrate composition is generally less variable than water
quality or periphyton, the mean substrate composition from the last two years of sampling was used
for all sampling dates.

Summary statistics for various periphyton parameters over the twelve months prior to the
macroinvertebrate sampling date were calculated (Table 2-3) following the same missing data
exclusion rule as used for the water quality data (see Figure 2-3 for data coverage).

Table 2-3:  Periphyton and substate parameters measured monthly by NRC between 2014-2021 and 2020-
2021, respectively. Periphyton summary statistics were calculated over the year prior to the macroinvertebrate
sample being taken. Mean substrate composition at a site was calculated from the last two years of sampling
and used for all time periods due to limited temporal data.

Variable Units Summary statistics
Periphyton
Benthic Chlorophyll a mg/m? Median
92" percentile
Maximum
Filaments cover % Median
Maximum
Films cover % Median
Maximum
Mats cover % Median
Maximum
Sludge cover % Median
Maximum
Total cover % Median
Maximum
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Variable

Units

Summary statistics

Weighted composite cover (WCC)

%

Median
92" percentile

Maximum
Macrophytes % cover % Median

Maximum
Substrate
Bedrock cover % Mean
Boulder cover % Mean
Large cobble cover % Mean
Small cobble cover % Mean
Gravel cover % Mean
Sand cover % Mean
Silt cover % Mean
Sand + Silt cover % Mean
Total Deposited sediment % Mean
Embeddedness - Good % Mean
Embeddedness - Loose % Mean
Embeddedness - Tight % Mean
Embeddedness - Moderate % Mean

2.4 Habitat

The habitat data consisted of scores from an annual Rapid Habitat Assessment (RHA; Clapcott et al.
2015) conducted each year from 2016 to 2021 in conjunction with the macroinvertebrate sampling.
The RHA includes ten physical habitat components: deposited sediment, invertebrate habitat
diversity, invertebrate habitat abundance, fish cover diversity, fish cover abundance, hydraulic
heterogeneity, bank erosion, bank vegetation, riparian width, and riparian shade. Each component is
assigned a score from 1-10 with 1 indicating poor habitat conditions and 10 indicating excellent
habitat conditions. The ten scores are then summed for a total RHA score.
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2.5 Flow

Continuous flow data (at 5-minute intervals) was available for 31 sites and summarised as daily mean
flow. Daily mean flows for the remaining 35 sites were estimated using NIWA's national hydrology
model, TopNet. Observed and modelled flows from the 31 sites with monitoring data corresponded
well, although TopNet often underestimated the highest peaks observed in the measured flow
records (Appendix B).

The daily flow data were summarised as minimum, mean, median, and maximum flow over the one
year, 3 months, 1 month, and 1 week prior to the macroinvertebrate sampling date (Table 2-4).
Additional antecedent flow metrics were calculated for each invertebrate sampling date including
days since last flow of 3 and 10 times the long-term median flow, long-term (over entire reporting
period, 2014-2021) mean and median flow, annual low flow (ALF), yearly base flow index (BFl), and
long-term base flow index (Table 2-4).

Table 2-4:  Calculated flow measurements and antecedent flow metrics for each Northland SoE site
between 2014 and 2021. Measured flows data were used when available, otherwise estimated flows from the
TopNet national hydrology model were used.

Variable Units Summary statistics

Daily flow

Daily flow m3/s Minimum

1 week Mean

1 month Prior to macroinvertebrate sampling Median

3 months Maximum

1year

Long-term (2014-2021) flow m3/s Mean
Median

Antecedent flows

Days since last flow 3 x long-term median flow (daFRE3) days -

Days since last flow 10 x long-term median flow (daFRE10) days -

Annual low flow (ALF) m3/s Median

Yearly base flow index (BFI) -

Long-term (2014-2021) base flow index (BFI) -

2.6 Drought

Two drought indices were available: The New Zealand Drought Index (NZDI) and the Standardised
Discharge Index (SDI). The NZDl is a regional index developed by NIWA which combines four
climatological drought indicators: the Standardised Precipitation Index, the Soil Moisture Deficit, the
Soil Moisture Deficit Anomaly, and the Potential Evapotranspiration Deficit (Mol et al. 2017).
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The NZDI is calculated daily using data from approximately 100 climate stations around New Zealand
which is the interpolated to produce national NZDI values at an approximately 500 m grid resolution
(Mol et al. 2017). The Northland macroinvertebrate sampling sites fall within three different NZDI
districts: Far North (includes 35 of NRC’s macroinvertebrate sampling sites), Kaipara (3 sites), and
Whangarei (29 sites). The annual maximum, median, and mean NZDI was calculated for each Site and
Reporting Year combination between 2014 and 2021. Higher NZDI values indicate more severe
drought (Table 2-5).

The Standardised Discharge Index is a local hydrological drought indicator developed by NRC based
on mean monthly flow data from river flow stations (Pham et al. 2022). The SDI was provided by NRC
for a three-month window during which droughts are most common (December-January) each year
for 24 river sites with flow monitoring stations. Lower values of SDI indicate more severe drought
(Table 2-5).

Table 2-5:  Drought categories for the New Zealand Drought Index (NZDI) and Standardised Discharge
Index (SDI). Note higher NZDI and lower SDI values indicate more severe drought.

Index Value Category
NzDI 0.75 Dry
1.00 Very dry
1.25 Extremely dry
1.50 Drought
1.75 Severe drought
SDI SDI >0.0 Near normal
-1.0<SDI<0.0 Mild drought
-1.5<SDI<1.0 Moderate drought
-2.0<SDI<1.5 Severe drought
SDI<-2.0 Extreme drought

2.7 Spatial attributes

For each site, catchment geography and topography, climate and geology data were extracted from
the New Zealand River Environment Classification (REC2.5) spatial layer (Table 2-6). Land cover
information was derived from the national Land Cover Database 5 (LCDB5) spatial layer (Table 2-6).

Table 2-6:  Catchment and local attributes from the River Environment Classification spatial layer and the
Land Cover database.

Spatial Layer Attribute class Attribute description Abbreviation Units
REC Geography and Mean elevation above elev m
topography sea level of catchment
Mean slope of the slope degrees
catchment
Catchment area catarea m2
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Spatial Layer Attribute class

Attribute description Abbreviation

Units

Climate

Geology

LCDB Land cover

Coefficient of variation rnvar
of annual catchment
rainfall

Mean number of rd10
catchment rain days

greater than 10

mm/month

Mean local air mat
temperature

Mean local particle size psize

Dominant (by -
proportion) land cover
in catchment

- Pastoral

- Indigenous Forest
- Exotic forest

- Urban

days/month

degrees C

ordinal

2.8 Collation

The seven datasets (Section 2.1 to 2.7) were aligned by Site Name and Reporting Year and combined
into a single spreadsheet (provided separately to NRC). The full collated dataset contained eight
invertebrate metrics, 152 environmental parameters, and two categorical variables (dominant land
use in catchment and stream type) for 66 sites (Table 2-7). Note that the spatial and temporal
coverage of data varied between parameters leading to gaps in full collated dataset (Table 2-6). This
dataset was further summarised and filtered as needed for specific analyses (described in the

Methods of Sections 3 to 6).

Table 2-7:  Number of monitoring sites and frequency and duration of sampling for each provided dataset.

Dataset Number of sites Frequency Duration
Monitoring
Invertebrates 66 Annually 2014-2021

(once between Dec-Feb)

Water quality: nutrients, 66 Monthly 2014-2021
conductivity, turbidity, DO, (varies by site) (varies by site)
temperature, sediment
Periphyton: chlorophyll a, 45 Monthly 2014-2021 (19 sites)
wcc 2015-2021 (45 sites)
Sediment % cover 34 Monthly 2020-2021
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Dataset Number of sites Frequency Duration
In-stream habitat (RHA) 66 Annually 2016-2021
Flow — measured 31 Every 5-mins 2014-2021
Flow — modelled 35 Daily 2014-2021
Drought
NZzDI 3 regions Daily 2014-2021
SDI 24 Annually 2014-2021

(3-month window Dec-Feb)

Spatial information
REC

Land cover

Spatial GIS layer

Spatial GIS layer
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3 NPS-FM attribute state

The objective of this section was to examine the state of macroinvertebrates in Northland in
accordance with the NPS-FM 2020. Nutrient toxicity and periphyton attributes were also examined
to assess their potential as drivers of macroinvertebrate community composition in the Northland
region.

3.1 Methods

For macroinvertebrate attributes (MCI, QMCI, and ASPM), the NPS-FM stipulates that state should be
calculated as the median score of the previous five years. When less than five years of data were
available (e.g., for 2014-2017), the median of available years was used, and the number of years
noted. For example, 2014 values were used for the state in 2014 and the median of 2014, 2015, 2016
and 2017 for the state in 2017. MCl and QMCI metrics were calculated using both: 1) tolerance
values from the NEMS and 2) Northland-specific tolerance values provided in Stark (2017). MClyg .-
tolerance values were used to calculate metrics for sites identified as hard-bottomed by NRC and
MClsg tolerance values for soft-bottomed sites. Metrics were compared to the NPS-FM attribute
bands for MCI, QMCI and ASPM. Attribute values are assigned to four bands, with Band A indicating
minimal organic pollution, high ecological integrity or near pristine conditions while the boundary
between Bands C and D is the national bottom line, with values in Band D indicative of severe organic
pollution or nutrient enrichment and severe loss of ecological integrity.

Nutrient toxicity attributes (Amm-N, NOs-N) were calculated as the annual median of monthly data.
Attribute values were compared to the NPS-FM attribute bands and national bottom lines, with Band
A indicating little stress or observed effect on freshwater species, Band B indicating impacts on
sensitive species, Band C indicating increased impacts and reduced survival of sensitive species, and
Band D indicating acute impacts (risk of death) for sensitive species. DRP was also calculated as the
annual median of monthly data, with Band A indicating no adverse effects and DRP similar to
reference conditions, Band B indicating slight DRP elevation above reference condition and slight
impacts, including loss of sensitive species, Band C indicating moderate DRP elevation and loss of
sensitive species, and Band D indicating substantial DRP elevation and changes in biotic communities.

Periphyton state was calculated as the 92" percentile of monthly data, with Band A indicating
negligible nutrient enrichment, Band B indicating low nutrient enrichment and occasional algal
blooms, Band C indicating moderate nutrient enrichment and periodic nuisance blooms, and Band D
indicating high nutrient enrichment and regular or extended-duration nuisance blooms.

3.2 Results

3.2.1 Macroinvertebrate state

In 2021, the most recent year of analysis, 34 sites were sampled for macroinvertebrates and only 2-3
(depending on metric) of these sites were in the A band of the NPSFM, indicating minimal
degradation, for any of the three macroinvertebrate attributes calculated using NEMS tolerance
values (Figure 3-1, Table 3-1). The majority of sites were in the D band, below the national bottom
line and indicative of degraded communities, for MCl and QMCI (16 and 21, respectively), although
there were approximately equal number of sites in the B, C, and D bands for ASPM (10, 12, and 9,
respectively). The proportion of sites in the A and B bands was higher in 2021 than in the previous
seven years for all three macroinvertebrate attributes (Figure 3-2).
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Using Northland-specific tolerance values to calculate macroinvertebrate metrics, rather than the
national tolerance values provided in the NEMS, resulted in higher metric scores for many sites. The
greatest improvement was in MCl scores, with a higher proportion of sites moving into the A band
and fewer sites in the D band (Figure 3-1, Table 3-1).
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Figure 3-1:  Proportion of NRC SoE monitoring sites with macroinvertebrate attribute scores in NPS-FM
bands A, B, C, and D each year 2014-2021. Metrics for 2018-2021 were calculated based on 5-year median
values, metric scores for 2014-2017 were calculated as the median of the years of available data.
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Figure 3-2:  Macroinvertebrate attribute states of each SOE monitoring site between 2018 and 2021. State
in each year was calculated as median of the previous inclusive five years using the species tolerance values
from NEMS (2020). Vertical lines indicate NPSFM attribute bands: green - A/B band boundary, orange - B/C
band boundary, red — C/D band boundary = national bottom line.
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Table 3-1:

Number (percent) of sites in each NPSFM attribute band each year for attribute site calculated using either tolerance values from the NEMS or

Northland-specific tolerance values. Note that ‘current state’ in the NPSFM for each year is the median score over the past 5 years; therefore, only scores for 2018-
2021 were able to be calculated over data from the previous 5 years and are true ‘current state.” Scores for 2014-2017 were calculated as the median of the years of
available data.

Reporting #sites Tolerance ASPM
Year (years) Values A B C D A B C D A B c D
2014 36 (1)  NEMS 1(3) 2(6) 13 (36) 20 (56) 2(6) 1(3) 5(14) 28 (78) 2(6) 6(17) 6(17) 22 (61)
Northland 4(11) 17 (47) 8(22) 7(19) 4(11) 5(14) 16 (44) 11(31) 2(6) 8(22) 10 (28) 16 (44)
2015 59(2) NEMS 2(3) 5(8) 20 (34) 32 (54) 3(5) 3(5) 10 (17) 43 (73) 3(5) 13(22) 12 (20) 31(53)
Northland 11(19) 29 (49) 12 (20) 7(12) 9 (15) 7(12) 26 (44) 17 (29) 3(5) 16 (27) 18 (31) 22 (37)
2016 61(3) NEMS 1(2) 5(8) 19 (31) 36 (59) 2(3) 5(8) 9(15) 45 (74) 2(3) 12 (20) 11 (18) 36 (59)
Northland 10 (16) 28 (46) 13 (21) 10 (16) 8 (13) 10 (16) 21 (34) 22 (36) 2(3) 15 (25) 21 (34) 23 (38)
2017 64(4) NEMS 1(2) 7(11) 20 (31) 36 (56) 5(8) 4 (6) 11(17) 44 (69) 4(6) 12 (19) 10 (16) 38 (59)
Northland 13 (20) 25 (39) 17 (27) 9 (14) 9 (14) 10 (16) 24 (38) 21 (33) 5(8) 15 (23) 17 (27) 27 (42)
2018 66(5) NEMS 1(2) 8(12) 22 (33) 35 (53) 3(5) 5(8) 11(17) 47 (71) 3(5) 16 (24) 13 (20) 34 (52)
Northland 12 (18) 27 (41) 15 (23) 12 (18) 11(17) 7 (11) 30 (45) 18 (27) 4 (6) 18 (27) 19 (29) 25 (38)
2019 66(5) NEMS 1(2) 6(9) 22 (33) 37 (56) 3(5) 6(9) 10 (15) 47 (71) 4 (6) 14 (21) 14 (21) 34 (52)
Northland 11(17) 31(47) 14 (21) 10 (15) 11(17) 9(14) 25 (38) 21 (32) 4 (6) 18 (27) 21 (32) 23 (35)
2020 52(5) NEMS 2(4) 5 (10) 18 (35) 27 (52) 3(6) 5(10) 9(17) 35 (67) 2(4) 13 (25) 14 (27) 23 (44)
Northland 9(17) 25 (48) 14 (27) 4(8) 8 (15) 8 (15) 19 (37) 17 (33) 4(3) 14 (27) 20 (38) 14 (27)
2021 34(5) NEMS 2(6) 6(18) 10 (29) 16 (47) 3(9) 5 (15) 5 (15) 21(62) 3(9) 10 (29) 12 (35) 9 (26)
Northland 10 (29) 19 (56) 5(15) 0(0) 9 (26) 5(15) 9(26) 11(32) 4(12) 12 (35) 12 (35) 6 (18)
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The majority of Northland SoE sites had median metric scores (over the eight years, 2014-2021)
below the NPSFM national bottom lines for each metric (Figure 3-3). When metric scores were
calculated using the Northland-specific tolerance values, more sites were above the national bottom
lines for MCl and QMCI, and to a lesser extent, ASPM (Figure 3-3). Whereas in a national dataset of
measured macroinvertebrate metric scores compiled by Canning et al. (2021) for the five years 2012-
2016, the majority of sites were above the national bottom lines for all three metrics (Figure 3-3).
However, metric scores in the national dataset also spanned a much a larger range.
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Figure 3-3: Comparison of the distribution of macroinvertebrate metric scores across Northland sites
between 2014-2021 compared to the distribution of national metric scores between 2012-2016 from Canning
et al. (2021). Macroinvertebrate metric scores for Northland were calculated using either tolerance values
from the NEMS (light blue) or Northland-specific tolerance values (blue). Macroinvertebrate metric scores for
the national dataset were calculated using NEMS tolerance values. The red dashed line is the NPS-FM national
bottom line for each macroinvertebrate metric.

3.2.2 Nutrient and periphyton state

Nutrient toxicity attributes (ammonia and nitrate) were primarily in the A or B band in all years,
indicating minimal impact on freshwater species (Figure 3-4). DRP was more variable between sites,
with the majority of sites falling in the C or D band in most years (Figure 3-4), indicating moderate
impact on freshwater communities and conditions favouring eutrophication. Correspondingly, many
(but not all) sites with higher DRP also had higher chlorophyll a (Figure 3-4). Three sites were below
the national bottom line for chlorophyll a (Awanui at FNDC, Hakaru at Topuni, and

Waiharakeke at Stringers Road), indicating regular nuisance blooms and possible nutrient
enrichment. However, the majority of sites were in the A or B band for chlorophyll a in most years,
indicating negligible nutrient enrichment and rare algal blooms.
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Figure 3-4

boundary. The C/D boundary is the national bottom line for periphyton (Chl a) while the B/D boundary is the

national bottom line for ammonia (Amm-N) and nitrate (NOs-N).
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4 Nutrient criteria

The objective of this section was to investigate the applicability of national nutrient criteria
developed by Canning et al. (2021) for Northland, specifically answering two questions:

Are the critical values in Canning et al. (2021) for DIN and DRP applicable in Northland rivers?

Are there differences among land use (i.e., predominately pasture, forest, or urban) and stream-bed
type (hard-bottomed and soft-bottomed) that may affect the applicability of these nutrient criteria?

4.1 Methods

Datasets of median nutrient concentrations and median macroinvertebrate metric scores per site
were developed and used for a minimisation of mismatch analysis following Canning et al. (2021).
Nutrient concentrations were summarised as the median of all monthly values over the entire eight-
year period for each site, excluding any values from within a year with more than 20% of months
missing data. Median concentrations were used to represent typical environmental conditions within
a site and for consistency with the analysis in Canning et al. (2021). Invertebrate metric scores were
summarised as the median of all annual values over the entire eight-year period for each site.
Invertebrate metrics included were QMCI, MCl and ASPM.

4.1.1 Minimisation of mismatch

Nutrient criteria were developed for dissolved inorganic nitrogen (DIN), dissolved reactive
phosphorus (DRP), ammoniacal nitrogen (Amm-N) and total Kjeldahl nitrogen (TKN) following the
‘minimisation of mismatch’ (MoM) method utilised in Canning et al. (2021), which was in turn
adapted from the European Union’s ‘Best practice for establishing nutrient concentrations to support
good ecological status’ guidelines (Phillips et al. 2018, 2019). Given an ecological target and a set of
data (ordered pairs of nutrient-ecological response), the MoM algorithm aims to find a nutrient
threshold that balances the numbers of sites in two sets: (a) sites with ecological states at or above
the target, but with nutrient concentrations above the threshold; and (b) sites with ecological states
below the target, but with nutrient concentrations below the threshold (Figure 4-1). These two sets
may be viewed, respectively, as sites that are relatively “over-protected” by the nutrient threshold,
given the ecological target, and sites that are relatively “under-protected” by the nutrient threshold,
given the ecological target (MfE 2022). Following Canning et al. (2021), ecological metric targets were
set as the NPS-FM ‘national bottom lines’ for macroinvertebrate attributes (e.g., 90 for MCl, 4.5 for
QMClI, 0.3 for ASPM).
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Figure 4-1: Illlustration of minimisation of mismatch (MoM) approach. Adapted from MfE 2022.

To calculate the mismatch point, ecological metrics are given a binary classification (good, poor)
based on whether the metric falls above or below a designated threshold (in this analysis, NPS-FM
national bottom line). Nutrient concentrations are split into a series of bins equating to different
potential nutrient boundary values. The percentage of records with either the same or different
ecological and nutrient classifications is then calculated for each bin. One loess curve is fit to records
which have good ecological status but poor nutrient status, and a second loess curve is fit to records
which have poor ecological status but good nutrient status. The intersection of the two curves is the
concentration at which mismatch is minimised. Uncertainty in the estimated nutrient criteria is
assessed via boot-strapping; the analysis was repeated 500 times with a random sub-sample of 75%
of the total data to obtain the mean, median, quantiles, and range of the estimate.

The minimisation of mismatch analysis was run using the site medians from all sites in R using a
bespoke R script adapted from that available online from Phillips et al. (2018). Boxplots and bar
charts were used to compare how often streams of different land use (pasture, plantation forest, and
urban) or substrate types (hard-bottomed or soft-bottomed) exceeded either national or Northland
nutrient criteria.

4.2 Results

4.2.1 Appropriateness of the method with NRC data

When we apply the MoM algorithm to setting nutrient thresholds, we assume that:

1. the ecological and nutrient data are normally or uniformly distributed and span the range of
values represented within the spatial region of concern (Northland, in this case),

2. there is a significant negative or curvilinear relationship between the stressor and the
ecological response,

3. the residuals of the above relationship are centred on zero, and

4. the stressor of concern is not strongly correlated with other environmental drivers.
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The NRC macroinvertebrate and nutrient datasets met some, but not all, of these assumptions.
Firstly, while all three macroinvertebrate metrics contained values that spanned all four NPS-FM
attribute bands, proportionally fewer sites were above the national bottom line, or ecological metric
target in the mis-match analysis, than in the national data set used by Canning et al. (2021). Long-
term median values (2014 to 2021) indicated that 39%, 27% and 30% of NRC sites were above the
ecological metric targets for MCIl, QMCI and APSM, respectively. However, in the Canning et al.
(2021) data set these values were considerably higher; 78%, 42%, and 69% of sites were above the
ecological metric target for MCI, QMCI, and ASPM, respectively. Concentrations of DIN in Northland
streams were lower than the national medians reported in Canning et al. (2021) - 0.15 mg/L in
Northland vs 0.24 mg/L nationally. DRP, on the other hand, was slightly higher in Northland (median
0.013 mg/L vs 0.0095 mg/L). The range of both DIN and DRP concentrations measured in Northland
were smaller than in the national dataset (Table 4-1).

Secondly, while macroinvertebrate metrics were negatively related to nutrient concentrations across
sites (Figure 4-2) with similar slopes to those in Canning et al. (2021) from the national dataset, only
the relationships with TKN (which was not included in the national analysis) were statistically
significant (Table A-1).

Additionally, ranges of nutrient concentrations in Northland sites which were either above or below
the NPS-FM national bottom line for each invertebrate metric showed considerable overlap, except
for TKN (and to a lesser extent Amm-N), where concentrations were higher in sites below the
national bottom line (Figure 4-3). According to Phillips et al. (2018), to calculate ecologically
meaningful nutrient criteria, the ranges of nutrient values in each ecological class should not
substantially overlap. Failing to meet these assumptions means that the derived criteria should be
interpreted with caution, and that the minimisation of mismatch analysis may not be the most
suitable method for determining nutrient thresholds for Northland.

Table 4-1:  Summary statistics for national and Northland nutrient and macroinvertebrate data. The
minimum, median, mean, maximum, 25th and 75th percentiles from Northland SoE monitoring sites compared
to measured? national data used in Canning et al. (2021).

Metric/

Nutrient # sites Minimum 25t percentile Median Mean 75t percentile  Maximum
Northland

MCI 66 54.22 77.1 86.6 88.11 97.97 136.19
aQmcl 66 1.8 2.7 3.9 3.8 4.6 7.5
ASPM 66 0.09 0.17 0.25 0.28 0.36 0.65
DIN (mg/L) 0.007 0.044 0.151 0.249 0.333 2.434
DRP (mg/L) 0.0045 0.0095 0.0133 0.0186 0.0213 0.0933
Amm-N (mg/L) 0.003 0.007 0.011 0.014 0.015 0.128
NOs-N (mg/L) 0.004 0.036 0.140 0.236 0.320 2.425
TKN (mg/L) 0.050 0.150 0.187 0.219 0.273 0.560
National

2 Canning et al. (2021) also summarised modelled national nutrient data; this comparison is only for the measured data.
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Metric/

R # sites Minimum 25t percentile Median Mean 75t percentile  Maximum
Nutrient
MCI 450 54.8 91 103.5 103.2 116 148
QMCI 294 2 4.1 5 5.1 6 7.9
ASPM 389 0.11 0.33 0.44 0.42 0.52 0.78
DIN (mg/L) 0.001 0.0515 0.241 0.5673 0.67 10.5788
DRP (mg/L) 0.0003 0.005 0.0095 0.0161 0.016 0.25
Amm-N NO;—N TKN DIN DRP
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Figure 4-2: Linear regressions between 8-year median macroinvertebrate metrics and nutrients across

Northland SoE sites. Solid lines indicate a significant relationship, dashed lines indicate non-significant
relationships. The national data used in Canning et al. (2021) for DIN and DRP is shown in blue. Dotted red lines
indicate the national bottom line for each macroinvertebrate metric.
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Figure 4-3: Median nutrient concentrations over the eight-year sampling period in Northland sites above
or below NPSFM bottom lines for macroinvertebrate attributes. The national nutrient concentration data
used in Canning et al. (2021) for DIN and DRP is shown in blue for comparison.

4.2.1 Results of mis-match analysis

The DIN criteria for achieving national bottom lines for MCl and ASPM derived from the Northland
dataset were 0.12 (0.05-0.18) mg/L and 0.06 (0.01-0.12) mg/L, respectively (Table 4-2). These criteria
values are an order of magnitude lower than the corresponding national criteria estimated by
Canning et al. (2021), which were 1.07 mg/L for MCl and 0.63 mg/L for ASPM. Unfortunately, we
were unable to identify the mismatch point for QMCI due to high uncertainty in estimates likely
arising from the small range of metric scores in the dataset. The DRP criteria for MCI, QMCI, and
ASPM were 0.012 mg/L (0.0099-0.015), 0.009 mg/L (0.007-0.012), and 0.01 mg/L (0.007-0.013),
respectively (Table 4-2). These criteria values were approximately half the value of the nationally
derived criteria (0.03 mg/L for MCl, 0.02 mg/L for QMCI, and 0.03 mg/L for ASPM) (Table 4-2).
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The ammoniacal N (Amm-N) criteria to achieve national bottom lines in Northland was 0.009 (0.006-
0.011) mg/L for MCI, 0.006 (0.004-0.008) mg/L for QMCI, and 0.007 (0.005-0.009) mg/L for ASPM
(Table 4-2). The criteria for NOs-N to achieve the MCI national bottom line was 0.1 (0.04 — 0.18)
mg/L, while the TKN criteria for MCI, QMCl, and ASPM were 0.18 (0.15-0.20) mg/L, 0.14 (0.12-0.16)
mg/L, and 0.15 (0.13-0.17) mg/L, respectively (Table 4-2). It was not possible to identify the
minimisation of mismatch point for either QMCI or ASPM and NOs-N. The percentage of sites which
remained mis-classified at the new criteria was between 10-20% (Figure 4-4).

Table 4-2:  Nutrient criteria derived for Northland using the minimisation of mismatch approach.
Summary statistics indicate the range of uncertainty around each nutrient criteria estimate (median value). The
national criteria presented in Canning et al. (2021) are included for comparison.

Metric Nutrient Minimum 1st Qu. Median Mean 3rd Qu. Maximum
Northland
MCI Amm-N 0.0062 0.0083 0.0087 0.0087 0.0091 0.0111
Qmcl Amm-N 0.0041 0.0058 0.0062 0.0061 0.0066 0.0078
ASPM Amm-N 0.0050 0.0062 0.0066 0.0067 0.0070 0.0091
MCI NOs-N 0.036 0.0847 0.1009 0.1035 0.1171 0.1821
MCI TKN 0.1457 0.1642 0.1704 0.1701 0.1750 0.1951
Qmcl TKN 0.1210 0.1380 0.1442 0.1433 0.1488 0.1627
ASPM TKN 0.1256 0.1457 0.1503 0.1502 0.155 0.1719
MCI DIN 0.0480 0.1028 0.1130 0.1150 0.1292 0.1779
ASPM DIN 0.0074 0.0561 0.0642 0.0679 0.0805 0.1211
MCI DRP 0.0099 0.0116 0.0121 0.0122 0.013 0.015
QMCI DRP 0.0070 0.0090 0.0096 0.0096 0.0102 0.0119
ASPM DRP 0.0073 0.0096 0.0102 0.0103 0.0107 0.0130
National
MCI DIN 0.93 1.04 1.07 1.07 11 1.21
QMCI DIN 0.45 0.57 0.63 0.62 0.67 0.77
ASPM DIN 1.01 1.09 1.12 1.13 1.16 1.29
MCI DRP 0.025 0.027 0.028 0.028 0.028 0.03
QMCI DRP 0.015 0.017 0.018 0.018 0.019 0.02
ASPM DRP 0.026 0.028 0.028 0.028 0.029 0.032
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Figure 4-4: Minimisation of mismatch analysis to derive nutrient criteria for Northland. Dark blue lines
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macroinvertebrate targets. The solid vertical black line indicates the median estimated criteria value, while the
dashed vertical lines indicate the maximum and minimum ranges of the criteria estimate. Blank panels indicate
metric-nutrient combinations for which it was not possible to derive nutrient criteria.

4.2.2 Influence of catchment land use and stream type

Northland streams surrounded by predominately indigenous forest (8 sites) had higher
macroinvertebrate metric scores than sites in catchments with exotic forestry (3 sites), which in turn
had higher metric scores than streams in pastoral catchments (53 sites, Figure 4-5). Urban streams (2
sites) had the lowest metric scores (Figure 4-5). The reverse was true for DIN concentrations, which
were lowest in indigenous forest sites and highest in urban sites (Figure 4-5). Median DRP
concentrations were similar across streams in catchments with different land uses, although there
was a large range in the indigenous forest sites (Figure 4-5).

All eight indigenous forest sites were below the national nutrient criteria value for maintaining
macroinvertebrate attributes for DIN, and seven were below the Northland-derived nutrient criteria
(Figure 4-6, Figure 4-7). As mentioned, some of the indigenous forest sites had high DRP
concentrations and exceeded both the national and Northland-specific nutrient criteria (Figure 4-6,
Figure 4-7). Streams in catchments with exotic forestry also had relatively high metric scores overall,
though some sites were below the national bottom lines for all three metrics. Forestry streams had
high TKN concentrations, with median concentrations around the Northland criteria value.
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The Amm-N and NOs; concentrations in forestry sites were also around the criteria value for those
nutrients, while all three forestry sites had median DIN concentrations above the Northland criteria
value. Streams in catchments dominated by pastoral land use had the lowest QMCI metric scores and
the highest TKN, while urban streams had the lowest MCl and ASPM scores, as well as the highest
nitrate and DIN. Nutrient concentrations in pastoral streams were largely below the national DIN and
DRP criteria but above the Northland criteria. Given that there were only two urban streams, one
must have been above the national DIN criteria and the other below. Both urban streams (Raumanga
at Bernard Street and Waiarohia at Second Avenue) were above the Northland DIN and DRP criteria.
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Figure 4-5: Macroinvertebrate metric scores (median over eight years) in Northland sites by catchment

land use category. The dashed red line indicates the national bottom line for each metric. The number of sites
in each category is given in brackets.
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Macroinvertebrate metric scores were higher in hard-bottomed streams than soft-bottomed
streams; about half the hard-bottomed streams scored above the NPSFM national bottom line for
each metric, but the majority of soft-bottomed streams were below (Figure 4-8). Northland hard-
bottomed and soft-bottomed streams had similar concentrations of DIN, NOs, and to a lesser extent
DRP (Figure 4-9, Figure 4-10). Both stream types were below the national DIN criteria; hard-
bottomed streams were also below the national DRP criteria, but some soft-bottomed sites were
above (Figure 4-9, Figure 4-10). Both stream types were largely above the Northland-specific DIN and
DRP criteria. Slightly over half of the sites in both stream types were above the Northland NOs-N
criteria.
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Soft-bottomed streams had higher concentrations of TKN and ammoniacal N than hard-bottomed
streams, and most soft-bottomed sites were above the Northland-specific criteria for these nutrients.
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Figure 4-8: Macroinvertebrate metric scores (median over eight years) in Northland sites by stream type.
HB is hard-bottomed streams, SB is soft-bottomed streams. The number of sites in each category is given in
brackets. The dashed red line indicates the national bottom line for each metric.
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HB is hard-bottomed streams, SB is soft-bottomed streams. The number of sites in each category is given in
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4.3 Discussion

The NRC dataset meets some, but not all, of the assumptions required for the analysis of mismatch

approach:

1. Macroinvertebrate metric scores span all four NPSFM attribute bands from minimal to
severe impact of organic pollution or loss of integrity, but the distribution is uneven, with
an over-representation of points with both low scores and relatively lower nutrient values.
Over-representation of any combination of nutrient and ecological metric targets (i.e.,
pass nutrients, fail ecology or pass ecology, fail nutrients) will influence the MoM results.
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2. Only TKN shows significant linear relationships with the macroinvertebrate metrics. The
other nutrients do not.

3. Nutrient concentrations in sites that either exceed or are below the ecological targets
(macroinvertebrate metric national bottom lines) show considerable overlap in DIN and
DRP. The Canning et al. (2021) dataset also showed some, although to a lesser degree,
overlap in nutrient concentrations between sites that either meet or did not meet the
ecological target. In reality, multiple stressors impacting macroinvertebrate communities
will likely make this assumption difficult to meet using field data.

The fact that the NRC data set did not fully meet the assumptions of the analysis means that care
should be taken in interpreting the output of the analysis.

Are the critical values in Canning et al. (2021) for DIN and DRP sufficient to maintain the NPSFM
macroinvertebrate attributes above the national bottom line in Northland rivers?

The Northland nutrient criteria for both DIN and DRP were substantially lower (i.e., more stringent)
than the nationally criteria; DIN by an order of magnitude and DRP by approximately half. However,
the low criteria are likely an artifact of the over-representation of sites with low nutrients and low
metric scores, rather than an ecologically meaningful threshold, as there is no strong evidence that
these nutrients are a key stressor of macroinvertebrate communities across the region.

Sites with high TKN concentrations commonly had more degraded macroinvertebrate communities,
indicating a potential role of TKN as a stressor. TKN and ammoniacal N make approximately two-
thirds of the organic nitrogen load in Northland pastoral streams (Rissmann et al. 2020). However,
pastoral streams are often impacted by multiple stressors in addition to nutrients which commonly
affect macroinvertebrate communities. Many of the pastoral streams in Northland are soft-
bottomed and located in poorly-drained low-lying floodplains (Rissmann et al. 2018). Correlations
between potential stressors of macroinvertebrate communities can make it hard to disentangle the
role of nutrients.

Causation is also difficult to identify when multiple correlated potential stressors are present. For
example, TKN frequently co-varies with sediment (Vidon et al. 2008), which is also known to
negatively impact macroinvertebrate community composition (Burdon et al. 2013). Moreover, while
anthropogenic sources of organic nitrogen, such as stock effluent or fertiliser (Vidon et al. 2008), may
be causing higher TKN concentrations in pastoral and/or soft-bottomed streams, natural sources of
organic carbon, such as upstream wetlands or macrophyte beds, may be likely in some locations. TKN
has also been found to be associated with peat and lacustrine deposits, as well as lignite and
mudstone geology, in Northland (Rissmann and Pearson 2020). Additionally, the low-lying floodplains
which cover 56% of Northland are poorly drained and high in organic matter and therefore organic N.
Further investigation into whether the source of organic nitrogen is anthropogenic or natural would
be valuable.

DRP concentrations in Northland are also strongly associated with the underlying geology,
particularly volcanic substrates (Rissmann et al. 2019, Rissmann and Pearson 2020, LAWA 2022),
rather than anthropogenic impacts. Median DRP concentrations were similar across land use
categories, including indigenous forest sites, and several sites with high DRP also had high
macroinvertebrate metric scores, indicating that DRP was not affecting macroinvertebrate
communities.
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Freshwater macroinvertebrate communities are generally influenced by in-stream nutrients via two
main pathways. Firstly, very high nutrient concentrations can cause direct toxic effects on
macroinvertebrates. However, 95% of the sites in NRC had median nitrate concentrations within
band A of the nitrate toxicity attribute under the NPSFM, and 92% of sites had median ammoniacal N
concentrations within band A of the ammonia toxicity attribute, indicating minimal likely toxic effects
at almost all sites. Secondly, high nutrient concentrations, combined with a lack of other limiting
factors such as adequate light, warm temperature and infrequent scouring floods, can lead to
excessive periphyton growth such as blooms of filamentous algae or thick mats. Such changes in the
biomass or growth form of periphyton can reduce habitat suitability and alter food availability for
macroinvertebrates, resulting in shifts in community composition (Tonkin et al. 2014), generally
leading to a decline in biodiversity and macroinvertebrate metric scores. Periphyton data was not
available for all sites at all dates, however 45% of sites with periphyton measurements had median
mg/m? of chlorophyll a within band A and 39% within band B of the NPS-FM, also indicating likely
limited impacts of periphyton on macroinvertebrate community communities at the majority of sites.
A small number of sites, however, have either nutrient concentrations at levels that may begin to
impact macroinvertebrate communities directly (e.g., nitrate at Waipao at Draffin Road) or have high
periphyton biomass (e.g., Awanui at FNDC, Hakaru at Topuni, and Waiharakeke at Stringers Road).
Further investigation and perhaps management of nutrient concentrations at these sites could be
beneficial.

Our results suggest that the minimisation of mismatch approach may not be the most suitable
method for setting nutrient criteria in Northland, and that further investigation of the role of
nutrients in impacting macroinvertebrate communities is needed before large effort or expense is
undertaken in reducing nutrient concentrations to below the criteria identified here. There may be
other more important stressors to concentrate on first.

Are there differences among land use (i.e., predominately pasture, forest, or urban) and geology
classes that may affect the applicability of these nutrient criteria?

Most pastoral and urban streams exceeded the Northland nutrient criteria for all forms of nitrogen,
while hard- and soft-bottomed streams were evenly split between exceeding and meeting nutrient
criteria for NO3 and DIN. More soft-bottomed streams exceeded criteria for ammoniacal N and TKN.
Indigenous forest sites were below nitrogen criteria levels. Reducing nitrogen concentrations in soft-
bottomed pastoral streams to meet the criteria levels could enable improvements in
macroinvertebrate communities in these sites, if nutrients are a key driver of community
composition. However, as discussed above, it will be first be necessary to confirm whether the
source of organic nitrogen is natural or anthropogenic, and investigate the influence of potential
covariates, particularly sediment. Except for a few indigenous forest sites, sites in all land use
categories exceeded the Northland criteria for DRP. However, given that median DRP was similar
across land use categories, it is likely that DRP concentrations are primarily associated with the
volcanic substrates common in Northland, rather than any anthropogenic impact, and cannot be
reduced by management.
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5 Drought and other drivers

The objective of this Section was to investigate drivers of macroinvertebrate communities in
Northland, specifically:

1. How do drought conditions impact macroinvertebrate community composition in
Northland?

2. Do drought conditions impact water quality and environmental variables that may
influence macroinvertebrate community composition?

3. What are the key drivers of macroinvertebrate communities of Northland streams?

4. Do drivers vary between streams with different stream type (hard- or soft-bottomed) or
surrounding land use (pastoral or indigenous forest)?

The influence of drought directly on macroinvertebrate communities and indirectly through changes
on potential drivers of macroinvertebrate communities were assessed in several ways. Firstly,
national and regional drought metrics were used to identify drought years. Secondly, values of
macroinvertebrate metrics and potential driver were visualised in drought and non-drought years.
Thirdly, time series datasets and spatial datasets were analysed using GAMM models to investigate
relationships between potential drivers of macroinvertebrate communities, including drought
metrics, and macroinvertebrate metrics, and to assess the relative importance of each driver. Details
of data processing and analyses are provided below.

5.1 Methods

5.1.1 Data processing and driver selection

A large dataset with 152 potential predictors of macroinvertebrate community composition across
66 sites was available (see Section 2 for details and collation information). Individual predictors
varied in the number of sites and time window over which data was available. In particular,
periphyton and substrate information was limited spatially and temporally. This led to the selection
of two datasets for analyses:

1. Atime series data set that incorporated data from as many years at as many sites as
possible. Periphyton and substrate were not included in this data set as both lacked spatial
and temporal coverage.

2. A spatial dataset where single values of predictors were summarised as overall medians for
each site. Substrate and periphyton information were included in this dataset, and drought
(NZDI) was not (as it represented temporal rather than spatial effects).

Each dataset contained too many potential drivers to include in modelling analyses (Table 5-1). We
therefore attempted to select the most relevant potential drivers using a combination of methods:

1. Expert opinion gathered from discussion with NRC staff and their local knowledge, as well as
knowledge of likely mechanisms of stressor impact on macroinvertebrates.

2. Examination of variation in NPS-FM attributes across Northland.

3. Principal components analysis (PCA) to identify groupings of related variables.
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4. |dentification of correlated variables using pairwise scatterplots and Pearson’s correlation
coefficients.

5. An automatic selection method (full subset selection, FSS) of statistical models to identify
most important predictors.

The PCA was run using both the time series dataset and the spatial data set with the rda function
from the ‘vegan’ package (Oksanen et al. 2022) in R. Based on the groupings from the PCA, subsets of
potential drivers were filtered for correlated variables using pairwise scatterplots and Pearson’s
correlation coefficients (Appendix C). Many variables were inherently correlated, such as proportions
of periphyton or sediment cover and flow values summarised over windows of varying duration (i.e.,
one month prior to sampling, 3 months prior to sampling). Consequently, a single variable was
chosen to represent the influence of that driver group (Table 5-1). Likewise, the different summary
statistics of each driver were typically highly correlated (i.e., median DIN correlated with 95t
percentile DIN). Therefore, annual medians were used for all drivers except chlorophyll a, where the
annual 92nd percentile was used. The reduced set of drivers chosen for the model selection analysis
are listed in (Table 5-1).
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Table 5-1:  Selected drivers for GAMM models. Drivers were selected based on data availability (number of years and sites sampled) and to minimize inclusion of
correlated variables. s indicates drivers included in the spatial model, t indicates drivers included in the time series models.

Driver/Response Indicators Units Frequency years Sites/year Correlations Final selection
category with
data
Response
Macroinvertebrate  QMCI, MCI, ASPM, Annually 8 34-66 All All

community metrics  %EPT taxa, %EPT abun.

Potential drivers

>50 sites

Nutrients Ammoniacal N g/m3 Monthly 7 28 - 66 TKN, TN Amm-N (s, t)
DIN g/m3 7 27-63 TN DIN (s, t)
Nitrate-N g/m3 7 27 -66 Nitrate-Nitrite-N, TN
Nitrite-N g/m3 7 27 - 65 Nitrate-Nitrite-N
Nitrate-Nitrite-N g/m3 7 28 - 66 Nitrate-N, TN
TKN g/m3 7 27 -65 Amm-N, TN TKN (s, t)
N g/m3 7 28-65 DIN
DRP g/m3 7 28 - 66 TP DRP (s, t)
TP g/m3 7 28 - 65 DRP
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Driver/Response Indicators Units Frequency years Sites/year Correlations Final selection
category with
data
Other water Conductivity ps/cm Monthly 7 28 - 65 Conductivity (s, t)
chemistry Turbidity - median NTU 7 28-65 Black disc, TSS Turbidity (s, t)
Black disc M 7 24 - 60 Turbidity
TSS g/m3 3 23-41 Turbidity, VSS
VSS g/m3 2 27-41 TSS
DO mg/L, % sat 7 28 - 65 DO (s, t)
Temperature deg. C 7 28 - 64 Temperature (s, t)
Drought metrics NZDI - Daily 8 34 - 66 NZDI (t)
SDI - Annually 7 18-21
Flow metrics Long term flow m3/s Annually 8 66 All flow, ALF
(measured and Days since last flow (daFRE)  days Daily 66 daFRE3 (s, t)
modelled data) 3 and 10 x long term median
flow
Annual low flow (ALF) m3/s Annually 8 66 All flow, long-term flow
Base flow index (BFI) - Daily 66 BFI (s, t)
Flow - m3/s Daily 66 All flow, ALF Flow 90 days prior
min/mean/max/median (s, t)
over 7, 30, 90, 365 days
prior
In-stream habitat RHA - Annually 6 33-65 RHA score (s)
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Driver/Response Indicators Units Frequency years Sites/year Correlations Final selection
category with
data
Catchment Us slope degrees - 8 66 Us slope (s, t)
characteristics Us elev m 8 66 Us elev (s, t)
Us rnvar mm 8 66 Us rnvar (s, t)
Us rd10 days/month 8 66 Us rd10 (s, t)
Us_catarea m? 8 66 Flow
Loc_psize - 8 66 Loc_psize (s, t)
Loc_mat degrees C 8 66 Loc_mat (s, t)
Potential drivers
<50 sites
Periphyton and Chlorophyll a mg/m? Monthly 6 12-33 All % cover, WCC Chlorophyll a (s)
macrophytes wcc % 6 6-28 All % cover, Chl a
Cover of different categories % 6 6-28 Chl a, WCC
Macrophytes % 2 12-23
Deposited fine % cover substrate categories % Monthly 2 31-34 Embeddedness, % cover % sand-silt (s)
sediment and Embeddedness categories % 31-34 Embeddedness, % cover
substrate Total deposited sediment % 16 % cover
cover
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5.1.2 Generalized additive models

Generalized additive mixed models (GAMMs) with a full subsets approach (Fisher et al. 2018) was
used to identify potential drivers of macroinvertebrate community composition using both the time
series and the spatial dataset. Drought metrics were included in all analyses using the time series
dataset. GAMMSs were chosen because they can model nonlinear relationships, which are common in
ecological data, using smooth functions, or splines. GAMMs can also include random effects to
account for the non-independence of time series data collected from the same site and
accommodate a variety of distributions (i.e., normal, Poisson, or binomial). Models were fit for
invertebrate metrics MCl, QMCI, ASPM, and percent EPT taxa and abundance. The MCl and QMCI
models were fit using a Gaussian error distribution, the percent EPT taxa and percent EPT abundance
models were fit using a binomial distribution, and the ASPM models were fit using a beta error
distribution (because values were bounded between 0 and 1). Predictor variables were log or square-
root transformed as necessary to improve distribution. Site was included as a random effect in
models using the time series dataset. Reporting year was included as a fixed effect in the full models
to account for temporal differences in macroinvertebrate metrics. It was not included as a random
term due to relatively small number of years (eight) and because we were interested in assessing the
influence of sampling year on the macroinvertebrate metrics.

A complete set of possible models was created using all combinations of predictor variables.
Predictors were fit as cubic regression splines with a maximum of five knots. Correlated predictors
were excluded from being in the same model but retained in the model set (Fisher et al. 2018).
Models were compared using the Akaike Information criterion (AIC) for small sample sizes (AICc). The
relative importance of predictor variables was assessed by summing the AlCc weights for all models
containing each variable, while the most parsimonious model was selected based on the lowest AlCc
and least number of predictor variables (Burnham and Anderson 2002). All GAMM and full subset
analyses were done using functions from the ‘mcgv’ (Wood 2011, Wood et al. 2016), and ‘FSSgam’
(Fisher et al. 2018) packages in R. For time-series data sets the variation in metric scores explained
by temporal variation in predictor values once between site differences had been accounted for was
assessed by subtracting the null model (random site effect only) R? from each model R2

The FSSgam analysis was run using the full spatial and timeseries datasets, as well as using subsets of
hard-bottomed streams only, soft-bottomed streams only, streams with primarily pastoral land use
in the catchment, and streams with primarily indigenous forest in the catchment. Due to the small
numbers of urban streams (2) and streams with primarily exotic forestry (3) in the catchment it was
not possible to test models for these subsets.

Drought

The effects of drought on macroinvertebrate communities were assessed by including the New
Zealand drought index (NZDI) and flow parameters as predictors in the generalized additive models
using the time series dataset. The effects of drought on other environmental drivers were also
assessed by fitting GAMMs for each individual driver and mean NZDI, with Site as a random effect.

5.2 Results

5.2.1 Principal components analysis

The PCA identified two general groups in the principal components analysis: flow-related parameters
along axis one and water quality and nutrients along axis 2 (Figure 5-1). Therefore, we tested for
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correlations between individual drivers within each group (Appendix C) and chose a representative
subset of drivers from each group to include in the modelling analyses. Spatial attributes were largely
associated with axis 2 as well, except for catchment area (i.e., us_catarea) which clustered with the
flow parameters and variation in annual catchment rainfall (i.e., us_rnvar), which was on axis one in
the PCA of site medians. Sites clustered together by land use, particularly the pastoral sites, and to a
lesser degree by stream type with land use (Figure 5-1).
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Figure 5-1:  Principal components analyses with potential environment drivers across all sites. A) Full time-
series dataset, B) Spatial dataset (site median values for each driver). The colour of the points and polygons
indicates the land use type: light green — exotic forest, dark green — indigenous forest, light brown — pastoral,
red — urban. The shape of the points indicates the stream type: circle — hard-bottomed, triangle — soft-
bottomed.
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5.2.2 Drought

There were three periods of climatic drought (NZDI > 1.5) across all three Northland regions during
the time period covered by the macroinvertebrate dataset: summers 2014, 2017, and 2020 (Figure
5-2, Table 5-2). There was also a brief drought period in summer 2021 in the Far North District, and
two additional drought periods in the Kaipara district — late summer 2014 and early summer 2018.
Drought periods identified by the NZDI also corresponded to low river flows (Table 5-3).

Far North District

2.5
2.01
1.54
1.0+
0.5+
0.0

Kaipara District

2.57
2.01
1.51

NZDI

1.0
0.5

0.0

Whangarei District

2.51
2.01
1.51
1.01
0.51

0.0
2013 2014 2015 2016 2017 2018 2019 2020 2021
Date

Figure 5-2:  Daily New Zealand Drought Index (NZDI) values for the 3 Northland regions between 2013 and
2022. Coloured bars indicate drought categories: yellow - dry, light orange — very dry, dark orange — extremely
dry, pink - drought, purple — severe drought.
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Figure 5-3: Hydrograph of mean daily flows for all Northland sites between 2014 and 2021. Light blue
lines are sites with measured flow data, the dark blue lines represent the flow data estimated from the TopNet
hydrologic model. Pink shaded areas indicate periods of drought conditions identified by the NZDI (NzZDI > 1.5).

Table 5-2:  Periods of drought across the 3 Northland regions over the time period corresponding to the
macroinvertebrate dataset (2014-2021). Drought periods were classified as days when NZDI > 1.5.

District Drought periods — NZDI Reporting Year
Far North 8/3/2013 - 16/4/2013 2014
15/1/2017 - 9/2/2017 2017
26/1/2020 - 25/3/2020 2020
12/1/2021-13/2/2021 2021
Kaipara 11/2/2013 - 29/4/2013 2014
3/3/2014 - 15/4/2014 2015
9/1/2017 - 19/2/2017 2017
23/12/2017 - 9/1/2018 2018
22/1/2020 - 16/4/2020 2020
Whangarei 4/3/2013 -23/4/2013 2014
9/1/2017 - 17/2/2017 2017
23/1/2020-27/3/2020 2020

The SDI, which is based on measured stream flow data, was loosely correlated with the NZDI
(Pearson’s r =-0.28). The SDI also identified the summers 2017 and 2020 as drought periods at all
monitored sites (Figure 5-4). The SDIl indicated that the 2020 drought was more severe than the 2017
drought at most sites, although drought severity varied between sites. The majority of sites also
experienced mild to moderate drought in 2019. The summer 2014 drought was mild at most sites,
with the exception of Manganui at Mititai Road. As the SDI was only available for 22 of the 66 sites,
the NZDI was chosen to represent drought in all future analyses.
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Figure 5-4: Standardised Discharge Index (SDI) values for 22 Northland sites between 2014-2020. The SDI
was calculated for a three-month window from December-February. Coloured bars indicate the drought

classification: green — near normal, yellow — mild drought, orange — moderate drought, pink — severe drought,
red — extreme drought.

ASPM scores and percent EPT taxa scores were lower across all sites sampled during the identified
drought years. There were no obvious differences in median MCIl, QMCI, and percent EPT metric
scores across during those years, although the range of observed scores was smaller than in many
other years (Figure 5-5). Scores for all metrics were higher in 2021, which was also identified as
drought year for the Far North district sites.
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Figure 5-5:  Distributions of macroinvertebrate metric scores across all Northland sites per year. Years
with drought periods (NZDI > 1.5) indicated in blue.

Individual mixed effects models fit for each macroinvertebrate metric with mean NZDI as a predictor
(fixed effect) and Site as a random effect all showed a significant negative effect of drought on metric
scores (Table 5-3). Plots of metrics vs mean NZDI for each site show indicate that some sites appear
to have strong relationships while others do not (Appendix D).
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Significance of mean NZDI in linear mixed effects models fit for each macroinvertebrate metric.

Table 5-3:

Site was included as a random effect in each model.

Metric Coefficient of mean NzDI SE DF t p-value
MCI -11.54 2.3600 368.93 -4.89 <0.001
amcl -0.38 0.1761 369.30 -2.15 <0.05
ASPM -0.09 0.0187 369.65 -4.83 <0.001
% EPT taxa -0.12 0.0222 370.11 -5.26 <0.001
% EPT abun -0.14 0.0353 372.84 -3.84 <0.001

The majority of selected potential environmental drivers did not vary distinctly between drought and
non-drought years (Figure 5-6). TKN was slightly lower in 2017 and 2020, turbidity and temperature
were also lower in 2020. Days since last flow greater than 3 x median was greater in drought years.

However, individual mixed effects models with drivers as the response, mean NZDI as the predictor,
and site as a random effect indicated significant relationships between the drought index and all
drivers except conductivity and BFI (Table 5-4). The plots of relationships between drivers and NZDI
in individual sites indicate the relationships are strong in some sites but indeterminate in others
(Appendix E). The relationships with dissolved oxygen, chlorophyll a, and DaFRE3 were positive, all

others were negative.
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Figure 5-6:  Distributions of selected drivers across all Northland sites each year. Years with drought

periods indicated in blue.
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Table 5-4:  Significance of mean NZDI in linear mixed effects models fit for each potential driver. Site was
included as a random effect in each model.

Driver Coefficient of mean NzZDI SE DF t p-value
Amm-N -0.01 0.0017 304.96 -5.53 <0.001
TKN -0.10 0.0139 292.80 -7.06 <0.001
DIN -0.15 0.0238 288.17 -6.32 <0.001
DRP -0.01 0.0009 304.80 -9.10 <0.001
Cond. 34.60 26.1000 319.44 1.33 0.19

Turb -4.13 0.3972 309.45 -10.40 <0.001
DO 0.60 0.1540 304.26 3.88 <0.001
Temp. -0.81 0.2279 307.36 -3.56 <0.001
Chla 1.02 0.3000 118.50 3.40 <0.001
Flow -1.08 0.1920 382.50 -5.64 <0.001
DaFRE3 41.08 13.3810 414.15 3.07 <0.01
BFI -0.02 0.0131 385.45 -1.21 0.23

5.2.3 GAMM analysis

The top spatial models for MCI, QMCI, and ASPM explained between 70-80% of the variation in
metric scores across sites (Table 5-5). DIN, DRP, conductivity, dissolved oxygen, temperature, percent
fine sediment cover (sand-silt), and daFRE3 were the most important (i.e., explained the most
variation) variables for MCl, QMCI, and ASPM (Figure 5-7). Variable importance scores for percent
EPT taxa and percent EPT abundance were low and relatively evenly distributed, indicating
uncertainty in which of the potential drivers was associated with these metrics across sites.
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Figure 5-7:  Relative importance of drivers in explaining the variation in macroinvertebrate metric scores,
based on full-subsets analysis using site medians.
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Table 5-5:

Top fitting (AAICc < 2) generalised models for each macroinvertebrate metric using full subsets
analysis on spatial dataset (site medians).

Response

Selected drivers

AlCc

BIC

wi.AlCc

wi.BIC

r2

edf

MCI

Qamcli

ASPM

% EPT taxa

% EPT abun

DIN
% Sand-Silt
Temperature

DIN

DaFRE3

% Sand-Silt
Temperature

DRP
Temperature

Conductivity
Temperature

DRP
DO
Temperature

Conductivity
% Sand-Silt
Temperature

BFI
DRP
Temperature

Conductivity
DaFRE3

DO
Temperature

DRP

DO
Temperature
us rnvar

Conductivity
DO
Temperature

Conductivity
DO
Temperature
us rnvar

DIN
DaFRE3
loc. mat
Turbidity

Temperature
Chla

RHA Score
null
Temperature

RHA Score

260.74

262.46

82.01

82.27

82.32

82.68

83.15

-76.11

-75.24

-74.93

-74.53

-74.13

35.40
35.46
36.90
37.19
28.87
29.98

267.63

268.85

89.03

89.30

89.63

90.04

90.23

-68.75

-69.12

-67.59

-67.34

-68.03

38.21
38.26
39.70
38.65
31.68
32.78

0.21

0.09

0.09

0.08

0.08

0.07

0.05

0.14

0.09

0.08

0.06

0.05

0.03
0.02
0.01
0.01
0.04
0.03

0.17

0.09

0.10

0.09

0.07

0.06

0.05

0.09

0.11

0.05

0.04

0.06

0.05
0.05
0.02
0.04
0.10
0.06

0.82

0.82

0.67

0.67

0.69

0.70

0.72

0.73

0.79

0.73

0.74

0.79

0.46
0.34
0.17
0.00
0.46
0.33

9.29

10.04

5.82

5.85

6.82

7.52

8.90

6.82

9.62

6.82

7.67

9.74

2.00
2.00
2.00
1.00
2.00
2.00
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# models

Response <2AICc Selected drivers AlCc BIC wi.AlCc  wi.BIC r2 edf
loc. psize 30.24 34.24 0.02 0.03 0.49 3.00
Temperature
Temperature 30.87 34.87 0.02 0.02 0.49 3.00
us rd10

In the time series models, the unique variation explained by environmental drivers over time was
determined by subtracting the variation associated with site differences, represented by the null
model with a random site term only. Environmental drivers explained 10-30% of the variation in MCl,
QMCI, and ASPM within sites over time, depending on the dataset (Table 5-6), while between site
differences explained 60-70% of the variation, similar to the spatial models.

The most important variables in the time series analysis using all sites were conductivity, dissolved
oxygen, baseflow, and drought (Figure 5-8). DIN was also important in explaining variation in MCI.
Turbidity and median flow over the previous 90 days were important variables for QMClI, as well as
spatial attributes local mean air temperature and particle size. Important variables in ASPM models
also included catchment slope and number of rain days >10 mm.

DIN, ammoniacal N, temperature, flow, BFl, and the drought index were the most important
variables in pastoral streams (Figure 5-8). Reporting Year was important in pastoral streams as well,
indicating metric scores varied more over time in those sites. Surprisingly, turbidity was important in
forest streams, along with dissolved oxygen, median flow, days since a flushing flow, and local
particle size. Variable importance scores were low and fairly evenly distributed in the hard-bottomed
and soft-bottomed analyses, which indicates high model uncertainty, as do the large numbers of
candidate models with comparable fit (AAICc < 2) and low model weights (i.e., < 0.02; Table 5-6).

Few of our selected drivers were important in explaining variation in percent EPT taxa, which also
had low variable importance and model weights in all subset analyses. In fact, the most parsimonious
model for percent EPT taxa in soft-bottomed, indigenous forest, and pastoral streams was the null
model with only the random site term. Percent EPT abundance, on the other hand, was associated
with temperature and drought in pasture streams (and across all sites as well; Figure 5-8).

62 Drivers of macroinvertebrate communities in Northland streams



MCI 1

QMCI {

ASPM 1

% EPT taxa 1
% EPT abun. {

All sites

MCI 4

QMCI {
ASPM 1

% EPT taxa
% EPT abun. 1

MCI 1

QMCI 1

ASPM 1

% EPT taxa 1
% EPT abun. 4

Indigenous Forest

MCI 4

QMCI 4
ASPM

% EPT taxa
% EPT abun. 1

Pastoral

MCI 1

QMCl 4

ASPM 1

% EPT taxa 1
% EPT abun. 1

Figure 5-8:

Reporting Year
AmmN

DIN

TKN

DRP

Turbidity
Conductivity
Dissolved oxygen
Temperature
Flow 90 days
DaFRE3

BFI

NZDI

us elev

us rnvar

us rd10

loc. mat

loc. psize

Importance

0.75
0.50
0.25

0.00

Relative importance of drivers in explaining the variation in macroinvertebrate metric scores,
based on full-subsets analysis. Each panel indicates the subset of data used for the analysis.
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Table 5-6:  Best generalised model for each macroinvertebrate metric using full subsets analysis with
different datasets. Only the top model is shown for brevity; however, the number of models <2AlCc indicates
the number of alternative top models with equally good fit for each response x dataset combination. The
unique R2 is the variance explained by the model above what is explained by the null model alone (in this case,
the random site term).

# models unique
Response Dataset < 2AICc Selected drivers AlCc BIC  wi.AlCc wi.BIC r2 r2 edf

MCI All sites 4 BFI 2427.392659.29 0.09 0.00 0.81 0.04 70.41
(n=66) DIN
Conductivity
DO
NZDI

HB 7 BFI 1547.491657.38 0.02 0.23 0.80 0.03 35.91
(n=39) DRP

loc. mat

NZDI

us rnvar

us slope

SB 46 NZDI 872.93 92445 0.01 0.05 0.74 0.02 23.05

(n=27) us elev
us rnvar

Pastoral 17 BFI 1948.002 115.76 0.03 0.01 0.73 0.07 53.85
(n=53) DIN

NzDI

Reporting Year

us elev

Indigenous 1 DO 237.23 237.81 0.20 0.47 0.85 0.23 11.88
Forest Flow 90 days
(n=8) Turbidity

Qmcl All sites 11 Flow 90 days 742.32 958.66 0.02 0.00 0.77 0.01 64.47
loc. mat
loc. psize
Turbidity
us slope

HB 33 DaFRE3 425.75 546.17 0.01 0.01 0.74 0.03 40.27
Flow 90 days
loc. mat
Turbidity
us slope

SB 6 BFI 287.31 333.81 0.03 0.03 0.60 0.02 19.81
DaFRE3
loc. mat
us rnvar

Pastoral 35 BFI 551.64 720.41 0.01 0.00 0.72 0.02 54.28
Reporting Year

Indigenous 2 loc. psize 81.92 87.67 0.22 0.09 0.74 0.35 8.77
Forest Turbidity

ASPM All sites 5 BFI -769.43 -557.21 0.11 0.00 0.74 0.04 61.67
DO
NZDI
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# models unique
Response Dataset < 2AICc Selected drivers AlCc BIC  wi.AlCc wi.BIC r2 r2 edf
us rd10
us slope
HB 21 BFI -485.33 -375.16 0.02 0.11 0.71 0.03 35.15
loc. mat
NzDI
us slope
SB 6 Flow 90 days -284.06 -228.52 0.09 0.13 0.72 0.07 25.33
loc. psize
Reporting Year
Pastoral 11 NzDI -658.07 -498.15 0.05 0.09 0.66 0.06 49.92
Reporting Year
us rd10
Indigenous 9 DO -59.82 -55.22 0.10 0.07 0.74 0.25 8.75
Forest Turbidity
% EPT taxa  All sites 20 Amm-N 253.98 265.32 0.02 0.06 0.22 0.22 4.00
Temperature
HB 9 Temperature 195.95 202.68 0.02 0.32 0.27 0.27 3.00
SB 9 null 57.66 60.34 0.02 0.23 0.00 0.00 2.00
Pastoral 8 null 177.60 181.17 0.01 0.37 0.00 0.00 2.00
Indigenous 11 null 47.55 48.91 0.03 0.09 0.00 0.00 2.00
Forest
% EPT All sites 4 NzDI 218.41 233.51 0.06 0.19 0.27 0.22 5.00
abundance Temperature
us rd10
HB 35 loc. mat 157.19 182.21 0.02 0.00 0.39 0.39 8.55
NzDI
us rd10
SB 18 DIN 57.09 67.17 0.01 0.04 0.37 0.23 4.83
DaFRE3
Pastoral 8 loc. mat 148.48 166.95 0.02 0.01 0.18 0.18 6.22
NzDI
Temperature
Indigenous 1 loc. psize 39.14 42.80 0.13 0.15 0.50 0.45 4.00
Forest Turbidity
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5.3 Discussion

What are the predictors of macroinvertebrate community composition in Northland rivers and
streams?

Identifying drivers of stream macroinvertebrate communities is always challenging, due to the nature
of stream ecosystems and the metrics themselves. Streams are subject to a wide range of multiple,
correlated stressors, and macroinvertebrate metrics are affected similarly by many of them. While
the full subsets modelling approach enabled us to explore the relative importance of a wide range of
potential predictors (more than could be tested in a single stepwise model selection approach), like
any automated model selection technique, it also has drawbacks. Firstly, it only identifies
correlations, not causality. Secondly, there is always the possibility that we failed to include an
additional predictor which is in fact the main driver of observed responses. Thirdly, it can easily
generate many more models than can reasonably be rigorously sense-checked. For example, we
obtained 337 “top’ models with AAICc <2 across our 25 metric and dataset combinations. Therefore,
we will restrict our discussion to variable importance across all models rather than detailed
investigation of individual models.

The key drivers identified by the full subsets analysis for pastoral streams were DIN, ammoniacal N,
temperature, drought index, and several flow metrics — median flow over the previous 90 days, base
flow index (BFI), and days since last flow greater than 3 times the long-term median flow (daFRE3).
Spatial attributes including upstream catchment area, rainfall variation, air temperature, and particle
size, were also moderately important for at least one metric. The drivers identified for pastoral
streams were consistent with known relationships between pastoral land cover/land use and stream
water quality and habitat; namely positive correlations with nutrient (N and P) concentrations
(Larned et al. 2019) and fine sediment cover (Niyogi et al. 2007). Nevertheless, it should be noted
that while variables were identified as important across all models, selected drivers only explained
around 3-4% of the unique variation in metrics in the most parsimonious model for each metric.

Key drivers in indigenous forest sites were turbidity, dissolved oxygen, flow, and local particle size.
The high relative importance of turbidity was surprising; while turbidity is often high in planted
forests due to soil erosion associated with harvest activities, unstable stream banks, or unsealed
access roads (Quinn et al. 1997, Quinn and Stroud 2002, Boothroyd et al. 2004), native forests
typically have low turbidity and high visual clarity (Quinn et al. 1997, Quinn and Stroud 2002).
However, a recent analysis of landscape stability and susceptibility to mass wasting (i.e., erosion due
to gravity) across the Northland region showed that the ancient basement rocks which underlie the
Brynderwyn Hills and Omahuta Forest areas are inherently unstable and prone to high rates of mass
wasting, erosion, and sediment yields despite being covered by indigenous vegetation (Rissman et al.
2019). Selected drivers explained a larger proportion of the variation (20-30%) in invertebrate
metrics across indigenous forest streams. While this could suggest that macroinvertebrate
communities in indigenous forest streams are highly sensitive to environmental drivers, it could also
be an artefact due to the small size of the dataset (only eight indigenous forest streams) and little
variation in metric scores (e.g., see Figure 4-7).

It was more difficult to determine key drivers for soft-bottomed or hard-bottomed streams, likely
due to co-occurring differences in catchment land use (i.e., approximately equal numbers of hard-
and soft-bottomed pastoral streams, all but one forest stream also being hard-bottomed). The most
important variables in the analysis using all sites were largely a combination of those identified for
pastoral and forest streams.
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There was higher uncertainty in models for percent EPT taxa and percent EPT abundance than for
MCI, QMCI, or ASPM, suggesting that these metrics are less useful for assessing impacts of
environmental drivers (or at least the subset of environmental drivers selected for this analysis) on
macroinvertebrate community composition in the Northland dataset. We suspect this is likely due to
high variation in percent EPT taxa and abundance within streams over time (Figure G-1). This is
supported by the lower proportion of variation explained by the site-only null model for these
metrics. An alternate, or additional, explanation is that species replacement maintained overall
proportions of EPT whilst still impacting MCl and QMCI scores. Several EPT taxa were high
contributors to overall turnover (see section 5.3 for further discussion), which also lends support to
this conjecture.

It is interesting that TKN did not explain a large amount of variation in any of the models (although it
did explain relatively more in the pastoral dataset than in any of the other datasets), as TKN makes
up two-thirds of the total N in the Northland water quality dataset (due to underlying geology and
poorly drained floodplain soils) and the nutrient criteria analysis indicated TKN was strongly
correlated with macroinvertebrate metric scores. This suggests that macroinvertebrates may not be
responding to TKN itself, but instead to another driver correlated with TKN that was not included in
our analyses. Sediment is a logical possibility; both sediment and TKN are associated with pastoral
land use, particularly livestock (Vidon et al. 2008, Rissmann et al. 2020).

Although sediment, along with chlorophyll a, was not sampled frequently enough to be included in
the time series analysis, it was included in the full subsets analysis using median values for all sites.
That analysis showed that percent fine sediment cover was an important driver of macroinvertebrate
composition between sites, in addition to DIN, DRP, conductivity, dissolved oxygen, temperature,
and daFRE3. Other than DRP, these drivers were also all important in the time series analysis,
indicating that sediment would likely also have been important if included. Furthermore, Death et al.
(2020) also found that deposited sediment was strongly correlated with differences in
macroinvertebrate communities between pastoral and indigenous forest streams in Northland.

The fact that DRP was only important for explaining variation between sites, but not within sites over
time, suggests that DRP concentrations have remained fairly stable across the region over the last
eight years, consistent with the main source of phosphorus being geological. Surprisingly, chlorophyll
a was not important in explaining variation in median metric scores across sites, even though it is a
main food source for many grazing macroinvertebrates.

How do drought conditions impact macroinvertebrate community composition in Northland?

The New Zealand drought index, was identified as an important variable in the FSSgam analysis for
macroinvertebrate metrics across all sites, as well as in the hard-bottomed and pastoral stream
subsets. The importance of drought in explaining variation in macroinvertebrate communities in
pastoral streams, which also had the strongest associations with other environmental predictors,
aligns with global research showing that already stressed streams are more susceptible to drought
effects and/or that drought exacerbates the impact of other environmental stressors (Mosley 2015).

The drought index also had significant negative linear relationships with all five macroinvertebrate
metrics, although the majority of the variation explained was due to the random site term.
Examination of relationships between metrics and drought within each site showed that only a
handful of sites had strong negative relationships between macroinvertebrate metrics and the
drought index, while the majority were indeterminate. This is consistent with a previous analysis by
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Death et al. (2020), who examined correlations between MCl and SQMCI and drought indices in
Northland using an older dataset, and found a mix of positive, negative, and no correlations across
sites.

Do drought conditions impact water quality and environmental variables that may influence
macroinvertebrate community composition?

The drought index also had significant negative relationships with many of the selected drivers,
indicating that there may also be indirect effects of drought on macroinvertebrate communities.

Some of the observed effects of drought on other drivers could in fact be beneficial for
macroinvertebrates, such as decreased nutrient concentrations. This could be the result of less run-
off during drought periods reducing the transport of contaminants from land into streams. However,
this may only be a short-term effect, as the first rainfall after a drought will carry a large load of built-
up contaminants (Lisboa et al. 2020). Habitat diversity could also increase in some hard-bottomed
streams as more riffles are exposed under low flows, although drying will also reduce habitat
availability, particularly along bank margins.

The drought index was positively related to periphyton, likely in conjunction with the positive
relationship between drought and DaFRE3, or days since a flushing flow (and therefore days of
periphyton accrual). Increased periphyton can have positive or negative impacts on
macroinvertebrate communities, depending on the composition of the community and whether it is
resource limited. Increases from small to moderate amounts of periphyton can support a larger
macroinvertebrate population, and perhaps even enhance diversity. However, studies have shown
that highly eutrophic streams with excessive in-stream plant and algal growth can become
dominated by generalist consumers, which then outcompete other more sensitive taxa, reducing
biodiversity (Graham et al. 2015, Barrett et al. 2021).

Interestingly, temperature and dissolved oxygen had the opposite relationships with the drought
index than what is usually observed. There was an overall positive relationship between the drought
index and dissolved oxygen and a negative relationship between temperature and the drought index
(although the relationships were not consistent across all sites). Typically, dissolved oxygen declines
with drought, as lower flows result in warmer water temperatures and reduced turbulence, both of
which also reduce oxygen concentrations. The contradictory relationships could be an artefact of
when the streams were sampled, as all oxygen and temperature data were from spot measurements
rather than continuous records. For example, the increased periphyton growth also associated with
drought may result in increased oxygen concentrations due to photosynthesis during the day, but
greater diurnal fluctuations and low oxygen conditions overnight. The negative temperature
relationship could also be due to thermal stratification and limited mixing of cooler bottom water in
wide, slow-flowing streams, which includes many of Northland’s soft-bottomed streams, during
drought conditions.

The small set of relationships described above illustrates the complexity of possible combinations
and interactions of indirect effects that drought may have on other environmental variables which
will in turn influence macroinvertebrate community composition.
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6 Community turnover

6.1 Methods

Community turnover was assessed as the percentage of taxa appearing and disappearing over time.
Three components of taxa turnover were calculated using the R package ‘codyn’ (Hallet et al. 2016):

1. total turnover, or the proportion of species which differ between time points,

2. appearances, or the proportion of new species not present at the previous time point,
and

3. disappearances, or the proportion of species no longer present compared to the previous
time point.

Individual taxa turnover was determined by summing the number of times a taxa went from
‘present’ to ‘absent’ or vice versa within a site between years.

6.2 Results

Turnover was fairly similar across years (Figure 6-1). Interestingly, there were more disappearances
than appearances across all sites in all land use categories in 2018 and 2021, the years following a
drought year. However, a similar pattern was not observed in 2015 after the 2014 drought. The
disappearances may have also been related to the large flood events which occurred soon after the
end of each drought period.
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Figure 6-1: Community turnover across Northland sites in different land use categories each year. Total
turnover is the sum of appearances and disappearances of individual taxa.
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Within individual sites, however, turnover was more variable between years (Figure 6-3). Some sites
had consistently lower turnover than others, such as Awanui at FNDC and Punakitere at Taheke,
while others were routinely high (i.e., Kaeo at Dip Road). A few sites had noticeable changes in
turnover over time, such as Hakaru at Topuni or Kenana at Kenana Road. The ratio of appearances to
disappearances also varied considerably between years in some sites, notably Aurere at Pekerau
Road and Whakapara at Cableway. Those two sites, along with several others (e.g., Mangere at
Kokopu Road, Orauiti at Sawyer Road, Waitangi at Wakelins) had much higher proportions of
disappearances in 2016 and 2018 than other years. Mean total turnover per site was higher in soft-
bottomed streams than hard-bottomed streams, but did not differ significantly between streams
with different catchment land use (Figure 6-2, Figure 6-3).

Taxa present in low abundance across many sites often had the highest turnover (Figure 6-4, Table
F-1). Austrosimulium (sandflies) had the greatest number of total appearances and disappearances
across all sites. Whereas Potamopyrgus (New Zealand mud snail), which was present and abundant
in all sites, was highly persistent, with, on average, only one appearance and disappearance per site
over the eight years.

Several EPT (Ephemeroptera — mayflies, Plecoptera — stoneflies, Trichoptera — caddisflies; taxa

known to be sensitive to organic pollution) were also persistent across many sites, including
Pycnocentrodes and Aoteapsyche caddisflies. Rare species which were found only in a handful of sites
did not persist between years, and were found only once or twice during the eight years. Overall, EPT
taxa had similar turnover rates to non-EPT taxa (Figure 6-4).
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Figure 6-2: Mean turnover per site in streams with different catchment land use or substrate type. HB =
hard-bottomed, SB = soft-bottomed.
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Figure 6-3:
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6.3 Discussion

How does the community composition (temporal species turnover) of MCl scoring taxa change within
and among the SoE sites?

The proportion of disappearances across all sites was greater than appearances the year after a
drought for two of three droughts (2017 and 2020 but not 2014), suggesting that there may be a lag
between a drought occurrence and detectable changes in invertebrate communities, and that it may
take over a year for communities to recover. However, many of the drought events in Northland
during our analysis period were followed by high flow events, which complicates determining the
recovery of the macroinvertebrate community. The subsequent floods likely deposited large
amounts of fine sediment on the streambeds and delayed reestablishment of slower-colonising taxa.

Turnover varied considerably within and between sites and was higher on average in soft-bottomed
sites than hard-bottomed sites. However, given that the drivers analysis found few strong
associations between macroinvertebrate community metrics and potential drivers in soft-bottomed
sites, turnover in these streams was either not correlated with our measured drivers or changes in
community composition did not affect metric scores, i.e., species which disappeared were replaced
by others with similar MCI tolerance values.

Correspondingly, high-scoring EPT taxa, did not have higher turnover rates than non-EPT taxa. This
could indicate that turnover is associated with species traits other than sensitivity to organic
pollution. Traits such as body shape and size, mobility, feeding mode and dietary preference, egg-
laying behaviour, generation time, and dispersal capability have all been linked to environmental
stressors, including fine sediment, eutrophication, acid mine drainage, floods, and droughts (Dolodec
et al. 2005, Aspin et al. 2018, Barrett et al. 2022). For example, small caddisflies and specialist
predators both disappeared from stream mesocosms under drying conditions, while small grazers
and aerial dispersing Diptera became more common (Aspin et al. 2018). Adding a traits component
to future turnover analyses could provide additional insight into the mechanisms by which
environmental drivers, including drought, are impacting macroinvertebrate communities in
Northland.
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7 Conclusions and recommendations

The key findings from each component of this project are as follows:
Nutrient criteria

The nutrient criteria analysis identified nutrient concentrations that were much lower than national
criteria for protecting macroinvertebrates. This was due to greater proportion of Northland sites with
low nutrient concentrations (above the national bottom line) but with macroinvertebrate community
metrics well below the national bottom line. This may indicate that nutrients are not the main drivers
of macroinvertebrate community patterns in Northland streams.

Macroinvertebrate communities are influenced by in-stream nutrient concentrations either via direct
toxic/physiological effects or through nutrient mediated changes in periphyton communities.
Nutrient concentrations in Northland waterways rarely exceeded toxicity guidelines and periphyton
biomass was not identified as a strong driver of macroinvertebrate community composition in the
drivers analysis. However, more periphyton data, particularly in years with stable river flows, would
assist in elucidating the mechanisms by which nutrients may be influencing macroinvertebrate
communities. In comparison to the Canning et al. (2021) national dataset, the Northland data had a
higher proportion of sites with macroinvertebrate metrics below the national bottom line, and of
sites with lower nutrient concentrations. The low macroinvertebrate metric values may be caused by
a stressor other than nutrient concentrations, therefore introducing a bias in the mis-match analysis
leading to lower nutrient criteria.

Drivers

The importance (i.e., amount of variation in macroinvertebrate community composition explained)
of environmental predictors over time varied between pastoral streams and indigenous forest
streams, but not between hard- and soft-bottomed streams. MCl, QMCI, and ASPM had stronger
associations with drivers than EPT metrics. Overall, the amount of variation explained by
environmental drivers in the time series models was low compared to that explained by site
differences alone. The spatial models identified additional drivers which explained variation in
metrics between sites but not over time. The main predictors of differences between sites included
nutrients, dissolved oxygen, temperature, fine sediment cover, and flow metrices. The main
predictors of differences over time within sites included conductivity, dissolved oxygen, baseflow,
and the drought index, as well as nutrients in pastoral streams only.

The drought index was a key driver of macroinvertebrate communities both in the full subsets
analysis and in individual regressions. It also had significant independent linear relationships with
many of the other environmental drivers.

Community turnover

Turnover was highly variable within and between sites. The largest contributors to total turnover
were taxa found across many sites, rather than rare species. Taxa disappearances increased the year
following a drought in two out of three cases, suggesting that impacts are longer-term and it may
take over a year for communities to fully recover. However, recovery times may have also been
affected by high flow events following most drought periods.
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Recommendations

We do not recommend use of the newly derived nutrient criteria until the role of nutrients in driving
macroinvertebrate community composition in Northland streams has been better quantified or a
more robust MoM approach has been developed to handle unevenly distributed data.

A combination of approaches will be required to determine the relationships between nutrients,
other potential stressors, and macroinvertebrate communities:

1.

Further investigation into whether the source of organic nitrogen (TKN) is anthropogenic
or natural, and whether correlated declines in macroinvertebrate communities are
associated with TKN itself, or other drivers which co-vary with TKN (i.e., sediment).

Continued collection of monthly periphyton and sediment data. We recommend that
continued collection of periphyton and sediment data be a priority for NRC, so that both
can be included in future driver analyses. Sediment has been shown to adversely impact
macroinvertebrate communities (Matthaei et al. 2010, Burdon et al. 2013) and many
areas of Northland are erosion prone (Rissmann et al. 2019). Periphyton is one of the
main mechanisms by which nutrients impact macroinvertebrate communities, via changes
in resource and habitat availability (Tonkin et al. 2014). The drivers analysis should be
repeated once 5+ years of periphyton sediment data are available.

Continued collection of continuous dissolved oxygen and temperature data at all sites (at
the time of this report, only six sites had continuous data available, which was not enough
for inclusion in the GAMM analysis). NPS-FM attributes based on continuous data (i.e.,
dissolved oxygen minima) should be included in the next drivers analysis.

Testing and validation of GAMMs. The top models from the full subsets approach should
be individually assessed. First, the shape of the splines in each model should be checked
for over-fitting (e.g., complex ‘wiggliness’ is unlikely to be ecologically meaningful).
Second, the predictive ability of the models should be tested via cross-validation. It would
also be useful to test the models on a dataset from outside Northland.

Further investigate patterns in community and taxa turnover. Species traits could be used
to compare taxa with high and low contributions to turnover. Turnover could also be used
as a response variable in full subsets models to identify any environmental drivers
associated with turnover.

More frequent (i.e., monthly or bi-monthly) sampling at a subset of sites immediately
following drought and flood events to investigate macroinvertebrate community recovery
trajectories. The timing of annual SoE monitoring is not ideal for separating the impacts of
these two types of stressors, as sites are likely to be sampled at the beginning of the
summer before the peak drought occurs, followed by floods during autumn and winter
before the next annual sample is collected.
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9 Glossary of abbreviations and terms

AlC, Akaike Information Criterion for small sample sizes

Amm-N Ammoniacal nitrogen

ASPM Average Score Per Metric

BFI Base Flow Index

daFREX Days since last flow exceeding X times the long-term median flow

DIN Dissolved Inorganic Nitrogen

DRP Dissolved Reactive Phosphorus

EPT Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies);

taxa sensitive to organic pollution

FSSgam Full subsets GAM analysis

GAMM Generalised Additive Mixed Model

MCI Macroinvertebrate Community Index

MoM Minimisation of mismatch

NOs-N Nitrate-nitrogen

NPS-FM National Policy Statement for Freshwater Management
NRC Northland Regional Council

NZDI New Zealand Drought Index

Qmcl Quantitative Macroinvertebrate Community Index
RHA Riparian Habitat Assessment

SDI Standardised Discharge Index

SoE State of the Environment

TKN Total Kjeldahl’s Nitrogen
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Appendix A Macroinvertebrate metric — nutrient regressions

Table A-1:  Regressions between metrics and nutrients across Northland SoE sites.

Metric Nutrient Coef. R2 F-stat DF p-value
MCI Amm-N -0.24 0.05 3.22 1,64 0.08
NOs-N 0.00 0.002 0.13 1,64 0.72
TKN -0.09 0.32 29.97 1,63 <0.001
DIN 0.00 0.003 0.16 1,63 0.69
DRP -0.13 0.01 0.78 1,64 0.38
Qmcl Amm-N -0.01 0.02 1.17 1,64 0.28
NOs-N 0.00 0.02 1.08 1,64 0.30
TKN -0.01 0.32 29.96 1,63 <0.001
DIN 0.00 0.02 1.00 1,63 0.32
DRP -0.02 0.04 2.44 1,64 0.12
ASPM Amm-N 0.00 0.02 1.07 1, 64 0.31
NOs-N 0.00 0.001 0.07 1,64 0.80
TKN 0.00 0.27 22.94 1,63 <0.001
DIN 0.00 0.001 0.05 1,63 0.83
DRP 0.00 0.01 0.65 1, 64 0.42
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Appendix C

Correlations between environmental drivers
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Figure C-3: Pearson's correlation coefficients and pairwise relationships between periphyton measurements (Chl a and % cover).
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Figure C-8: Pearson's correlation coefficients and pairwise relationships between drivers selected for full subsets analysis.
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Figure D-2: QMCI scores vs mean NZDI for all Northland SoE monitoring sites.
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Figure D-3: ASPM vs mean NZDI for all Northland SoE monitoring sites.
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Figure D-5: % EPT abundance vs mean NzDI for all Northland SoE monitoring sites.
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Figure E-2:  Total Kjeldahl nitrogen vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-3:  Dissolved inorganic nitrogen vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-4: Dissolved reactive phosphorus vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-5:  Conductivity vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-6:  Turbidity vs mean NZzDI for all Northland SoE monitoring sites.
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Figure E-7:  Dissolved oxygen vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-8: Temperature vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-9:  Chlorophyll a vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-10: Flow vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-11: Days since last flow greater than 3 times the long-term median flow (DaFRE3) vs mean NZDI for all Northland SoE monitoring sites.
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Figure E-12: Base flow index vs mean NZDI for all Northland SoE monitoring sites
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Appendix F Taxa turnover

Table F-1:  Total turnover by individual taxa. 'Stays'indicates the taxa remained present in the site. Mean
abundance is per site.

Taxa EPT Appearances Disappearances Stays Total # Mean
turnovers Sites  abundance

Austrosimulium 98 95 80 193 57 18
Oligochaeta 93 92 196 185 66 82
Triplectides T 86 93 126 179 61 40
Polypedilum 91 87 125 178 62 32
Acarina 87 90 104 177 65 16
Platyhelminthes 93 84 96 177 60 34
Oxyethira (T) 83 87 195 170 63 45
Hudsonema T 84 84 95 168 54 16
Nemertea 86 74 69 160 53 14
Hydrobiosis T 84 75 136 159 54 11
Gundlachia = Ferrissia 78 77 97 155 56 32
Tanypodinae 83 72 79 155 54 10
Orthocladiinae 71 76 238 147 65 70
Pycnocentria T 70 66 113 136 51 37
Zephlebia E 69 67 152 136 55 38
Paroxyethira (T) 66 69 30 135 46 22
Tanytarsini 68 64 244 132 64 116
Lymnaeidae 62 69 46 131 46 15
Austroclima E 61 64 73 125 48 21
Deleatidium E 59 55 102 114 43 59
Hirudinea 55 53 20 108 39 7

Aphrophila 53 54 67 107 36 9

Physa = Physella 52 55 103 107 45 42
Muscidae 56 49 55 105 39 9

Pycnocentrodes T 54 51 214 105 55 81
Archichauliodes 53 50 137 103 46 13
Hydropsyche - Aoteapsyche T 55 46 191 101 53 52
Copepoda 47 51 21 98 33 59
Chironomus 47 47 10 94 34 88
Nematoda 45 48 4 93 35 9

Sphaeriidae 44 48 20 92 34 27
Elmidae 46 43 210 89 52 84
Maoridiamesa 44 43 23 87 27 17
Latia 40 46 53 86 33 16
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Taxa EPT Appearances Disappearances Stays Total # Mean
turnovers Sites  abundance
Xanthocnemis 40 45 64 85 33 63
Paracalliope 38 45 96 83 36 156
Ostracoda 41 40 32 81 33 64
Potamopyrgus 39 41 356 80 66 1981
Coloburiscus E 42 36 73 78 35 31
Paratya 36 37 36 73 26 23
Gyraulus 34 35 23 69 28 71
Psilochorema T 37 32 16 69 23 4
Paradixa 34 34 17 68 23 17
Empididae 35 32 14 67 25 7
Halicarcinus 31 34 41 65 21 7
Neurochorema T 34 30 21 64 23 4
Microvelia 31 31 20 62 26 11
Enochrus 28 28 2 56 23 9
Sigara 25 28 23 53 23 11
Amphipoda 28 24 10 52 20 66
Hydra 24 28 3 52 21 18
Mischoderus 29 23 9 52 21 4
Eriopterini 25 20 22 45 19 3
Collembola 22 22 1 44 20 9
Anisoptera 20 22 2 42 17 13
Hemicordulia 21 21 5 42 16 4
Polyplectropus T 22 20 5 42 18 11
Hydraenidae 23 18 28 41 22 8
Nesameletus E 23 18 23 41 18 25
Costachorema T 20 18 8 38 16 5
Harrisius 19 18 2 37 15 7
Mauiulus E 18 19 0 37 17 26
Acanthophlebia E 20 16 6 36 12 5
Olinga T 19 17 33 36 18 24
Corynoneura 17 17 2 34 14 35
Hygraula 17 17 6 34 15 4
Melanopsis = Zemelanopsis 16 18 26 34 15 24
Oecetis T 15 17 12 32 17 11
Ceratopogonidae 15 16 4 31 15 4
Rallidens E 16 15 5 31 13 4
Ameletopsis E 14 14 8 28 11 5
Anisops 14 14 4 28 10 10
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Taxa EPT Appearances Disappearances Stays Total # Mean
turnovers Sites  abundance

Antiporus 14 14 0 28 10 3
Plectrocnemia T 13 14 1 27 12 11
Ichthybotus E 14 12 7 26 10 4
Ephydridae 12 11 1 23 13 5
Oniscigaster E 12 11 3 23 10 2
Zelandobius P 12 11 3 23 9 3
Psychodidae 9 10 3 19 10 9
Austrolestes 9 9 3 18 6 3
Beraeoptera T 9 9 15 18 9 37
Tanaidacea 7 10 18 17 8 75
Antipodochlora 8 8 2 16 8 2
Helicopsyche T 9 7 12 16 10 22
Neozephlebia E 10 6 5 16 9 23
Paranephrops 8 8 0 16 8 46
Ptilodactylidae 8 8 7 16 8 4
Rhabdocoela 8 8 0 16 7 20
Austroperla P 9 6 6 15 9 2
Glyptophysa = Physastra 6 7 1 13 6 5
Zelandoperla P 8 5 16 13 7 12
Paralimnophila 6 6 1 12 4 7
Hexatomini 6 5 0 11 6 3
Hydropsyche - Orthopsyche T 6 5 12 11 7 10
Tabanidae 4 7 4 11 6 3
Diaprepocoris 5 5 2 10 4 12
Hydrophilidae 5 5 0 10 5 9
Stenoperla P 5 5 4 10 4 7
Arachnocolus E 4 4 0 8 4 5
Cladocera 4 4 0 8 4 22
Culex 4 4 1 8 4 7
Lobodiamesa 4 4 0 8 4 12
Paraleptamphopus 4 4 2 8 4 6
Tepakia E 4 4 0 8 4 22
Megaleptoperla P 4 3 2 7 3 2
Zelandoptila T 3 4 0 7 3 7
Dixidae 3 3 0 6 3 12
Isopoda 3 3 0 6 3 26
Limonia 3 3 0 6 3 2
Procordulia 3 3 0 6 3 14
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Taxa EPT Appearances Disappearances Stays Total # Mean
turnovers Sites  abundance
Sciomyzidae 3 3 0 6 3 2
Austronella E 2 3 1 5 22
Hydrobiosella T 3 2 1 5 2 27
Acroperla P 2 2 0 4 2 3
Aeshna 2 2 0 4 2 2
Ischnura 2 2 0 4 2 4
Oeconesidae T 2 2 0 4 2 5
Paucispinigera 2 2 0 4 2 5
Rhantus 2 2 0 4 1 9
Siphlaenigma E 2 2 0 4 2 6
Stictocladius 2 2 2 4 2 3
Polychaeta 1 2 2 3 2 8
Stratiomyidae 2 1 0 3 2 5
Atalophlebioides E 1 1 0 2 1 1
Chironomidae 1 1 0 2 1 12
Copelatus 1 1 0 2 1 1
Dytiscidae 1 1 0 2 1 1
Hemianax 1 1 0 2 1 1
Molophilus 1 1 0 2 1 2
Mysidae 1 1 0 2 1 1
Nematomorpha 1 1 0 2 1 2
Nothodixa 1 1 0 2 1 4
Spaniocerca P 1 1 0 2 1 2
Staphylinidae 1 1 0 2 1 1
Taraperla P 1 1 0 2 1 4
Zelolessica T 1 1 0 2 1 4
Hydrochorema T 1 0 0 1 1 1
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Appendix G

Aurere at Pekerau Road

Awanui at FNDC

Awanui at Waihue Channel

Hakaru at Topuni

Hatea at Mair Park

Hatea at Whangarei Falls

Percent EPT taxa and percent EPT abundance within sites

Kaeo at Dip Road

Kaihu at Gorge

Kenana at Kenana Road
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Figure G-1: Percent EPT taxa and percent EPT abundance over time in each site.
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