Design Modelling
Aupouri Peninsula Catchment (M11)
Northland Regional Council
30 April 2021
Document Status

<table>
<thead>
<tr>
<th>Version</th>
<th>Doc type</th>
<th>Reviewed by</th>
<th>Approved by</th>
<th>Date issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Draft</td>
<td>Lachlan Inglis</td>
<td>Ben Hughes</td>
<td>30/04/2021</td>
</tr>
</tbody>
</table>

Project Details

Project Name: Aupouri Catchment (M11)
Client: Northland Regional Council
Client Project Manager: Sher Khan & Matt De Boer
Water Technology Project Manager: Bertrand Salmi
Water Technology Project Director: Ben Hughes
Authors: Alvin Mingjun Li, Lachlan Inglis
Document Number: M11_20010434_R02V01a_Validation_Report.docx

COPYRIGHT

Water Technology Pty Ltd has produced this document in accordance with instructions from Northland Regional Council for their use only. The concepts and information contained in this document are the copyright of Water Technology Pty Ltd. Use or copying of this document in whole or in part without written permission of Water Technology Pty Ltd constitutes an infringement of copyright.

Water Technology Pty Ltd does not warrant this document is definitive nor free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

15 Business Park Drive
Notting Hill VIC 3168
Telephone (03) 8526 0800
Fax (03) 9558 9365
ACN 093 377 283
ABN 60 093 377 283
CONTENTS

1 PROJECT OVERVIEW 4
2 STUDY AREA 6
3 DESIGN MODELLING 8
 3.1 Overview 8
 3.2 Model Parameters 8
 3.2.1 Rainfall Intensity-Duration-Frequency 8
 3.2.2 Design Rainfall Temporal Patterns 9
 3.2.3 Losses 10
 3.2.4 Boundaries 13
4 MODELLING RESULTS 14
 4.1 Modelled Result Processing/Filtering 14
5 VERIFICATION OF DESIGN FLOWS 19
 5.1 Flood Frequency Analysis 19
 5.2 Regional Estimation Methods 20
 5.2.1 NIWA New Zealand River Flood Statistics Portal 20
 5.2.2 SCS method 21
 5.2.3 Rational Method 21
 5.3 Verification Results 22
6 SUMMARY 25

LIST OF FIGURES

Figure 1-1 Model delineation 5
Figure 2-1 Study area 7
Figure 3-1 Example of design rainfall grid (12-hour, 1% AEP rainfall) for M11 9
Figure 3-2 Temporal pattern for design rainfall of 12-hour, 1% AEP event 10
Figure 3-3 Hydraulic model material layer 12
Figure 4-1 Design modelling of 1% flood depth 15
Figure 4-2 Design Modelling of 1% AEP flood velocity 16
Figure 4-3 Design modelling of 1% AEP flood hazard 17
Figure 4-4 Design modelling of 1% AEP flood depth zoomed at a township 18
Figure 5-1 Available streamflow gauges within Aupouri Peninsula catchment 19
Figure 5-2 Example of flood frequency curve of Log Pearson III distribution fit 20
Figure 5-3 Verification of design modelling results against hydrological estimates 24

LIST OF TABLES

Table 3-1 Key Modelling Information 8
Table 3-2 1% AEP Design rainfall depth 10
Table 3-3 Design model parameters 11
Table 4-1 Flood hazard classification 14
Table 5-1 Summary of 1% AEP peak flow comparison
1 PROJECT OVERVIEW

Overview

Water Technology was commissioned by Northland Regional Council (NRC) to undertake a region-wide flood modelling study. The study area encompassed the entire Northland Regional Council area which covers an area of over 12,500 km², with the exclusion offshore islands. The aim of this project was to map riverine flood hazard zones across the entire Northland region and update existing flood intelligence.

Modelling approach

This project used a 2D Direct Rainfall (also known as Rain on Grid) approach for hydraulic modelling and has provided flood extents for a defined range of design storms. The hydraulic modelling software TUFLOW was used. TUFLOW is a widely used software package suitable for the analysis of flooding. TUFLOW routes overland flow across a topographic surface (2D domain) to create flood extent, depth, velocity and flood hazard outputs that can be used for planning, intelligence and emergency response. The latest release of TUFLOW offers several recent advanced modelling techniques to improve modelling accuracy which where practical, were tested and adopted in this project.

This study delineated and modelled 19 catchments, shown in Figure 1-1. To validate the adopted methodology and model parameters used in the design modelling, 9 catchments were calibrated against recent (and historic) flood events. The calibration/validation methodology is documented in a standalone report NRC Riverine Flood Mapping - Calibration Report – R01 and is referred to throughout this document as the Calibration Report.

This report documents the design modelling methodology for Aupouri Peninsula Catchment (M11), noting that this catchment was not calibrated, however, model parameters reflected regional parameters and assumptions relied upon for Catchments M03, M06 & M07 which were calibrated and are located within close proximity to Catchment M11.
FIGURE 1-1 MODEL DELINEATION

Aupouri Peninsula

Legend

- Waterways
- Priority catchments
- Awanui
- Model delineation

Data sources: NRC
Imagery: Google map

M:\20010434_NRC_Region_River_Flood_Model\Spatial\Workspaces\20010434_Memo_figs.qgz
2021-02-16 13:38:16.429
2 STUDY AREA

The model 11 catchment is coastal catchment, covering a total area of approximately 1052 km². Waterways within the catchment generally consist of short sharp reaches and there are a number of unnamed waterways which discharge to the east coast (i.e. Great Exhibition Bay and Spirits Bay) and west coast. Figure 2-1 displays the study area of the catchment model 11.
FIGURE 2-1 STUDY AREA
3 DESIGN MODELLING

3.1 Overview

A hydraulic model (TUFLOW) of the Aupouri Peninsula catchment (M11) was constructed to model overland flooding. A range of storm durations were run and results for each Annual Exceedance Probability (AEP) event were enveloped to ensure the critical duration was well represented across each part of the study area. The merged results captured the maximum flood level and depth of the range of design event durations modelled.

Table 3-1 and the following sections detail the key modelling information used in the development of the hydraulic model.

| TABLE 3-1 KEY MODELLING INFORMATION |
| --- | --- |
| **Terrain data** | NRC 1m LiDAR without filling of sinks but includes the “burning of creek alignments’ through embankments |
| **Model type** | Direct rainfall model |
| **Model build** | Build: 2020-10-AA-iSP-w64 |
| **Rainfall** | See Sections 3.2.1 and 3.2.4 |
| **Losses** | See Section |
| **Boundaries** | See Section 3.2.4 |
| **Modelling solution scheme** | TUFLOW HPC (adaptive timestep) |
| **Modelling hardware** | GPU |
| **Modelling technique** | Sub-grid-sampling (SGS) |
| **Model grid size** | 10m with 1m SGS |

3.2 Model Parameters

A range of model parameters were adopted, based on the calibration of catchments in the Far North region (Catchments M03, M06 & M07). Details of these are outlined below.

3.2.1 Rainfall Intensity-Duration-Frequency

Intensity-Duration-Frequency (IDF) tables were developed by NIWA through the High Intensity Rainfall Design System (HIRDSV4)\(^1\). Design rainfall totals for durations from 10 minute up to 120 hours were developed for design modelling and were developed at 179 rainfall gauge sites across the wider study area. The IDF tables cover a range of magnitude events from 1 in 1.58 ARI through to 1 in 250 ARI along with climate change predictions (Representative Concentration Pathway 4.6, 6 & 8.5) up to the year 2100. For this catchment, eight rainfall gauges were used with a spatially weighted grid of rainfall totals created for design modelling. Figure 3-1 shows the 12-hour cumulative rainfall grid for the 1% AEP event along with the rainfall gauge locations used to create the grid.

\(^1\) Accessed via https://hirds.niwa.co.nz/
3.2.2 Design Rainfall Temporal Patterns

Design temporal patterns (rainfall hyetographs) were provided by NRC for design modelling. These were developed by HIRDS and subsequently reviewed as part of a project undertaken by Macky & Shamseldin (2020)\(^2\). The project aimed to provide multiple design hyetographs and a better representation of rainfall variability across the Northland region, replacing the single set of design hyetographs previously developed.

The HIRDS design temporal pattern is recommended for design modelling of Northland catchments\(^2\). Hence, the design hyetographs for the rainfall gauges were developed using the rainfall IDF data at available rainfall gauges for the catchment. Although a 12-hour hyetograph is suitable for design modelling for most Northland catchments as suggested\(^2\), a range of durations were selected; including 1-hour, 6-hour, 12-hour and 24-hour for each of the following AEPs 10%, 2% and 1% AEP to ensure that the event critical duration was identified across the catchment. The shorter durations were critical in the upper parts of the catchment, while the longer 24-hour durations were critical in the lower catchment, where flood volumes can be critical factor in generating peak flood levels.

Table 3-2 summarises the 1% AEP rainfall depth (based on IDF from HIRDSV4) for different event durations at each rainfall gauge and Figure 3-2 shows the design cumulative rainfall across the different gauges for the 12-hour duration event. Considering a single temporal pattern is assigned (i.e. HIRDS hyetograph), the proportional amount of rainfall applied through time in a design event is generally consistent (as shown in Figure 3-2) across the catchment area.

\(^2\) Macky & Shamseldin (2020) - Northland Region-wide Hyetograph review
TABLE 3-2 1% AEP DESIGN RAINFALL DEPTH

<table>
<thead>
<tr>
<th>Gauge location</th>
<th>1% AEP (mm)</th>
<th>1-hour</th>
<th>6-hour</th>
<th>12-hour</th>
<th>24-hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUPOURI PENINSULA RAWS_O00836</td>
<td>56</td>
<td>113</td>
<td>144</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Aupouri_forest_A53024</td>
<td>61</td>
<td>128</td>
<td>160</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Cape_Reinga_awr_A42462</td>
<td>55</td>
<td>106</td>
<td>137</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>PAUA BLK PARENGARENGA_A42592</td>
<td>60</td>
<td>124</td>
<td>160</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Te_Paki_Stn_Te_Hapua_A42581</td>
<td>62</td>
<td>136</td>
<td>179</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Waiharara2_A43922</td>
<td>62</td>
<td>131</td>
<td>164</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Waiharara_A43921</td>
<td>60</td>
<td>125</td>
<td>158</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Waipapakauri_A53022</td>
<td>63</td>
<td>139</td>
<td>175</td>
<td>211</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3-2 TEMPORAL PATTERN FOR DESIGN RAINFALL OF 12-HOUR, 1% AEP EVENT

A climate change scenario (for the 1% AEP events) was modelled for the 2081-2100 timeframe, for the RCP 8.5. This is based on the increases in rainfall intensity of 35%, 30%, 26% and 22% respectively for 1-hour, 6-hour, 12-hour and 24-hour duration events.

3.2.3 Losses

Each model cell was assigned a Manning’s “n” (surface roughness), initial loss and a continuing loss based on land use types and importantly hydrological characteristics. Table 3-3 summarises the adopted roughness and loss parameters. It should be noted these parameters were adopted based on the calibration to a historic event where streamflow gauges were present in other Far North catchments (i.e. M03, M06 and M07). Figure 3-3 displays the roughness layer based on the land use type, showing most land use is forest and grassland.
TABLE 3-3 DESIGN MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Hydrological areas</th>
<th>Land use types</th>
<th>Manning’s n</th>
<th>Initial loss (IL) – mm</th>
<th>Continuing loss (CL) – mm/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire M11 catchment</td>
<td>Forest</td>
<td>0.09</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Grassland</td>
<td>0.05</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Cropland – perennial</td>
<td>0.04</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cropland – annual</td>
<td>0.04</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wetland – open water</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wetland – vegetated</td>
<td>0.05</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Urban areas</td>
<td>0.10</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Waterways</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0.06</td>
<td>15</td>
<td>1.5</td>
</tr>
</tbody>
</table>
FIGURE 3-3 HYDRAULIC MODEL MATERIAL LAYER
3.2.4 Boundaries

As the Aupouri Peninsula catchment is a coastal catchment, two static tail-water (i.e. 2161 mm OTP and 1295 mm OTP) outflow boundaries based on the 2 year ARI tide level\(^3\) at Pouto Point gauge and Veronica Channel gauge were respectively used in the west coast and east coast for the design modelling. A 1.2 m sea level rise was adopted for climate change runs based on the project brief. There is no upstream inflow coming from other catchments applied in this catchment model.

\(^3\) MWH, 2010 *Priority Rivers – Flow Assessment, Sea Level Rise and Storm Surge*, prepared for Northland Regional Council
4 MODELLING RESULTS

4.1 Modelled Result Processing/Filtering

Design modelling consisted of running the model for four storm durations (1-hour, 6-hour, 12-hour and 24-hour) with the results enveloped for each design event (i.e. 1%, 2% and 10% AEP) to ensure the critical duration was well represented across each part of the catchment. Each model run produced gridded results, including depth, water surface elevation (WSE), flood hazard (Z0) and velocity. Several post-processing steps were required to produce the final design modelling outputs. These are described as follows:

Step 1:
- The modelling results are firstly merged to produce a single data set for each AEP from the storm durations modelled. For example, the flood depth output is produced by merging the depth results of the four different durations within each AEP. This allows for the critical storm duration across each part of the catchment to be represented (i.e. the short intense storms in upper reaches and longer duration storms in the lower parts of the catchment).

Step 2:
- The maximum gridded results are then remapped to a finer DEM grid using LiDAR data resampled to a 5-m grid resolution. This allows the flood extent to be more accurately displayed on the map and the higher resolution gridded results (i.e. same resolution as the 5-m DEM) to be produced.

Step 3:
- Finally, the remapped results are post-processed by filtering out depths below 100mm and puddle areas less than 2000m2 as agreed with NRC.

Figure 4-1, Figure 4-2 and Figure 4-3 respectively show the final post-processed flood depths, velocity and hazard of the 1% AEP design event modelled for M1. Figure 4-4 shows the flood depth map zoomed in at a township as an example. It is noted that the hazard classification is based on the following criteria:

<table>
<thead>
<tr>
<th>Hazard classification</th>
<th>Hazard – VxD (m2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Low to Moderate</td>
<td>0.2 to 0.4</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Moderate to High</td>
<td>0.6 to 0.84</td>
</tr>
<tr>
<td>High</td>
<td>> 0.84</td>
</tr>
</tbody>
</table>
FIGURE 4-1 DESIGN MODELLING OF 1% FLOOD DEPTH
FIGURE 4-2 DESIGN MODELLING OF 1% AEP FLOOD VELOCITY
FIGURE 4-3 DESIGN MODELLING OF 1% AEP FLOOD HAZARD
FIGURE 4-4 DESIGN MODELLING OF 1% AEP FLOOD DEPTH ZOOMED AT A TOWNSHIP
5 VERIFICATION OF DESIGN FLOWS

Flow lines were included at waterways and streamflow gauge in the hydraulic model as 2D Plot Outputs (2D PO) for design events. This allows flow hydrographs and peak flows to be extracted at these locations. Figure 5-1 displays the available streamflow gauge within the Aupouri Peninsula catchment.

The modelled peak flow for the 1% AEP design flood was compared with hydrological estimates, including FFA, rational method and SCS method, as well as observations from 2011 and historic maxima from streamflow gauge records.

5.1 Flood Frequency Analysis

A Flood Frequency Analysis (FFA) was undertaken for streamflow gauging stations with at least 25 years of records. The length of record for each gauge location was assessed to check if it met the 25+ year criteria as this can affect the reliability of the FFA especially for the estimation of major flood events (e.g. 1% AEP). The design flow estimates provide additional verification against the design hydraulic modelling results. The streamflow gauging stations that were selected for FFA and the corresponding 1% AEP flow estimates can be found in the Calibration Report (R01).

The annual series (maximum streamflow values for each year of gauge record) were calculated and input into FLIKE. FLIKE is a software package used for FFA and provides five different probability distributions for fitting the historical records. Log Pearson III distribution is commonly used across New Zealand and South-East...
Australia to fit streamflow records and was used for all gauges within the study area. The FFA results have shown that this probability distribution has a relatively good fit in all the stations.

An example of the flood frequency curve by fitting the annual maximum streamflow values with the Log Pearson III distribution is shown in Figure 5-2. The design curve generated by the probability distribution shows a good fit with the historic records in more frequent events (i.e. 1 in 10 year or more frequent) but may slightly overestimate the design flows for rare events (e.g. 1% AEP flow). The flattening of the historic points may also suggest limitations with the current rating curves. Overall, the design curve shows a good fit with the tight confidence intervals indicating low uncertainty within these estimates.

![Flood Frequency Curve](image)

FIGURE 5-2 EXAMPLE OF FLOOD FREQUENCY CURVE OF LOG PEARSON III DISTRIBUTION FIT

5.2 Regional Estimation Methods

For catchments where a suitable streamflow gauge record was not available, additional estimation methods were used to provide design flow verification. These methods are based on empirical estimations using catchment area and design rainfall totals to estimate peak design flows. These methods were checked for each streamflow gauge location within the study area and are described below.

5.2.1 NIWA New Zealand River Flood Statistics Portal

The New Zealand River Flood Statistics portal\(^4\) provides peak flood estimation at streamflow gauging stations and the entire river system in New Zealand completed in 2018. The design estimates can be extracted from the portal are:

- Flood Frequency estimates (at flow gauge).
- Flood Frequency estimates, noted as Henderson & Collins 2018 (at river reach).

\(^4\) NIWA Flood Frequency tool, accessed via: https://niwa.co.nz/natural-hazards/hazards/floods
Rational Method HIRDS V3 (at river reach).

The flood frequency estimates given by the portal are determined using the Mean Annual Flow method developed by Henderson & Collins (2018)\(^5\).

5.2.2 SCS method

The Soil Conservation Service (SCS) method, first developed by the U.S. Department of Agriculture’s Soil Conservation Service, calculates peak flood flow based on rainfall and land-cover-related parameters. It is the recommended method for stormwater design in the Auckland region, providing a useful comparison. The peak flow equation is:

\[
Q = \frac{(P - I_a)^2}{(P - I_a + S)}
\]

where:

- Q is run-off depth (millimetres).
- P is rainfall depth (millimetres)
- S is the potential maximum retention after run-off begins (millimetres).
- I\(_a\) is initial abstraction (millimetres), which is 5 millimetres for permeable areas and zero otherwise.

The retention parameter S (measured in millimetres) is related to catchment characteristics through:

\[
S = \frac{1000}{CN - 10} \times 25.4.
\]

The value of the curve number (CN) represents the run-off from 0 (no run-off) to 100 (full run-off) and it is influenced by soil group and land use. A CN value of 50 was used for the SCS estimation of this catchment.

The run-off depth (Q) is then converted to a peak flow rate using the SCS unit hydrograph.

5.2.3 Rational Method

The Rational Method is widely used across both New Zealand and Australia. The equation is based on catchment area and design rainfall. The equation is:

\[
Q = \frac{C i A}{3.6}
\]

where:

- Q is the estimate of the peak design discharge in cubic metres per second
- C is the run-off coefficient
- i is rainfall intensity in mm/hr hour, for the time of concentration
- A is the catchment area in km\(^2\).

5.3 Verification Results

Table 5-1 summarises the comparison of 1% AEP peak flow estimates with the modelled values at Selwyn Swamp at Big Flat Rd gauge in the Aupouri Peninsula catchment and the differences between the estimation methods and modelled results can be visualised in Figure 5-3.

The Rational Method and the SCS method are recommended for relatively small catchments, with the SCS method limited to 12 km². The catchment size for the Big Flat Rd gauge is 1.74 km², making these equations applicable in this case.

At this Big Flat Rd gauge, the modelled design flow has a good match to most of these hydrological estimates as shown in Figure 5-3. With exception of the Rational Method HIRDS V3 estimate from NIWA, which significantly overestimates the design flow at this location compared with the other estimates.

The use of empirical method estimations provided an additional degree of verification for streamflow gauges with less than 25 years of record. It is also noted that the calibration process identified uncertainty with the streamflow records for high flows. The uncertainty of high flow extrapolation at these gauges could result in further uncertainty of flow estimate methods that rely solely on streamflow gauge data. The results are fit for purpose including the of mapping riverine flood hazard zones across the entire Northland region and update existing flood intelligence.
TABLE 5-1 SUMMARY OF 1% AEP PEAK FLOW COMPARISON

<table>
<thead>
<tr>
<th>Streamflow gauge location</th>
<th>Hydraulic model (m³/s)</th>
<th>Records at gauge (m³/s)</th>
<th>Empirical estimates (m³/s)</th>
<th>NIWA Flood Frequency Tool 2018 (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical duration</td>
<td>Modelled peak</td>
<td>Jan 2011 peak</td>
<td>Highest on record</td>
</tr>
<tr>
<td>Selwyn Swamp at Big Flat Rd</td>
<td>12 hr</td>
<td>2.8</td>
<td>1.4</td>
<td>2.74</td>
</tr>
</tbody>
</table>
FIGURE 5-3 VERIFICATION OF DESIGN MODELLING RESULTS AGAINST HYDROLOGICAL ESTIMATES
6 SUMMARY

The Aupouri Peninsula catchment model (M11) was not calibrated and its model parameters were adopted based on nearby calibrated catchments in the Far North region. The design modelling of this catchment consisted of four storm durations (1-hour, 6-hour, 12-hour and 24-hour) for each design AEP (i.e. 1%, 2% and 10% AEP). Design flood extents and gridded results, including depth, water surface elevation, velocity and hazard were produced and delivered to NRC.

The modelled 1% AEP design flows were verified against several design flood estimation methods at the Selwyn Swamp at Big Flat Rd gauge. The modelled peak flow at this location shows a good match to various estimation methods.

When considering the scope and the scale of this project, the current modelling results are considered fit for use. Modelling outputs can be used to identify flood hazard and potential flood risk. It can also inform planning decisions, infill flood mapping between detailed flood studies and provide a basis for broad emergency management exercises.