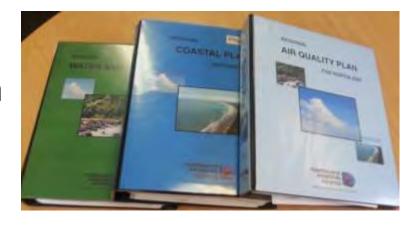
Welcome

Regional plans review workshop

Water quality

15 October 2014

Welcome, introductions and housekeeping


- Welcome
- NRC introductions
- Toilets and fire
- Attendance register
- Participant introductions

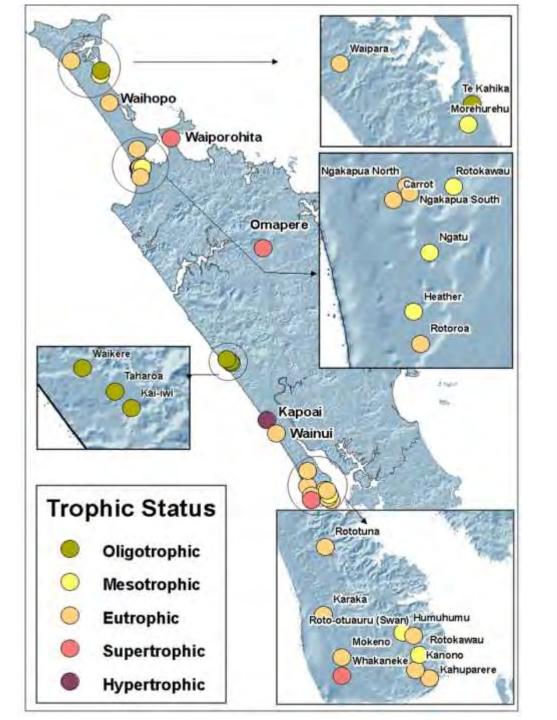
Why do a review?

- Plans are old
- Based on old information
- We have to
- Learnt a lot
- New government policy

Outline of the day

$$3:00-3:15$$
 Afternoon tea

Key terms

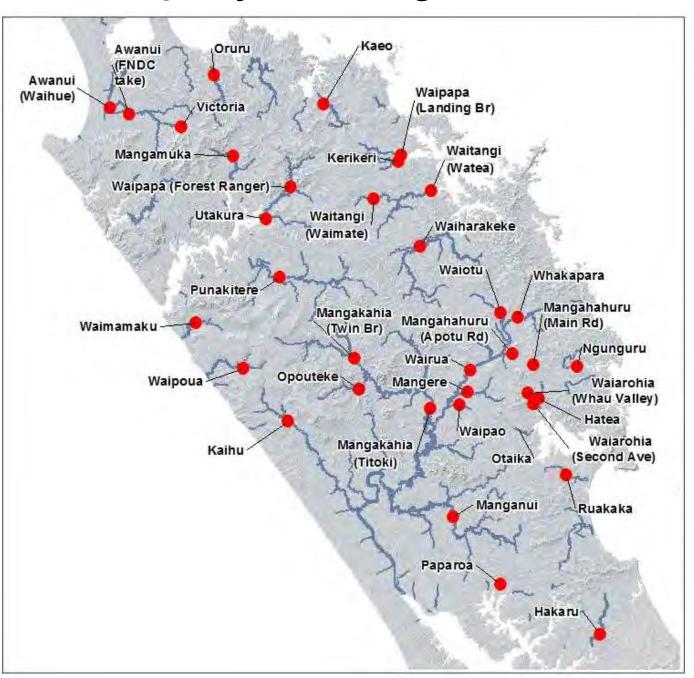

- Attributes
- Water quality objectives
- Water quality limits
- Water management units
- Over-allocation

Significant issues with Northland's water quality

- Elevated levels of nutrients in the majority of lakes and in some rivers
- Poor water clarity in many lowland rivers
- High sediment accumulation rates in a number of estuaries and harbours
- Elevated levels of faecal microbes in the majority of rivers and some inner estuarine areas

Comparison of Lake Water Quality Monitoring Network data (2009-2013) with the compulsory attribute states in the National Policy Statement for Freshwater Management

Value		Ecosystem Health							Human Health (Secondary Contact Recreation)	
Attribute		Phytoplankton (mg chl-a/m³)		Total Nitrogen (mg/m³)	Total Phosphorous (mg/m3)	Ammonia Toxicity (mg NH ₄ - N/L		Cyanobacteria (cells/mL)	E.coli/100 mL**	
Compliance Statistic		Annual Median	Annual Maximum	Annual Median	Annual Median	Annual Median	Annual Maximum	80 th Percentile	Annual Median	
	Carrot*	8.4	14.4	545	21.0	0.012	0.040	No Data	No Data	
	Heather*	4.4	5.8	308	10.5	0.003	0.004	No Data	No Data	
	Morehurehu*	2.1	3.1	518	12.5	0.018	0.036	No Data	No Data	
	Ngakapua North*	5.0	9.0	496	14.0	0.008	0.037	No Data	No Data	
Aupouri lakes	Ngakapua South	6.5	9.7	553	16.0	0.007	0.014	No Data	No Data	
	Ngatu*	3.3	6.7	806	9.5	0.080	0.144	No Data	No Data	
	Rotokawau	4.3	6.6	583	13.0	0.018	0.006	No Data	No Data	
	Rotoroa*	6.7	10.2	832	14.0	0.011	0.084	No Data	No Data	
	Te Kahika*	1.0	1.9	329	3.5	0.036	0.052	No Data	No Data	
	Waihopo*	3.4	6.9	590	15.5	0.012	0.023	No Data	No Data	
	Waipara*	2.9	9.8	465	13.0	0.007	0.011	No Data	No Data	
	Waiparera	11.9	21.1	793	25.0	0.007	0.015	No Data	No Data	
Karikari/ Central Iakes	Omapere (east)	3.8	6.0	515	43.0	0.012	0.027	No Data	No Data	
	Omapere (west)	3.4	9.8	480	52.0	0.011	0.014	No Data	No Data	
	Waiporohita	18.4	30.0	827	35.5	0.006	0.009	No Data	No Data	
Kai iwi Iakes	Kai lwi*	1.8	3.2	351	6.5	0.005	0.007	No Data	No Data	
	Taharoa*	1.0	1.5	130	2.0	0.002	0.002	No Data	No Data	
	Waikare*	1.9	2.9	204	4.0	0.002	0.003	No Data	No Data	
Pouto lakes	Humuhumu*	3.8	6.7	305	9.5	0.004	0.004	No Data	No Data	
	Kahuparere*	8.5	15.1	400	14.5	0.002	0.014	No Data	No Data	
	Kanono*	7.1	9.9	337	18.5	0.002	0.009	No Data	No Data	
	Karaka	18.1	110.0	494	33.0	0.015	0.169	No Data	No Data	
	Mokeno	4.2	13.6	1012	39.5	0.034	0.169	No Data	No Data	
	Rotokawau*	2.0	3.7	337	8.0	0.006	0.053	No Data	No Data	
	Rototuna	20.3	57.9	771	32.0	0.005	0.011	No Data	No Data	
	Swan	21.4	24.4	912	57.0	0.009	0.024	No Data	No Data	
	Wainui*	3.6	15.4	417	16.0	0.007	0.014	No Data	No Data	

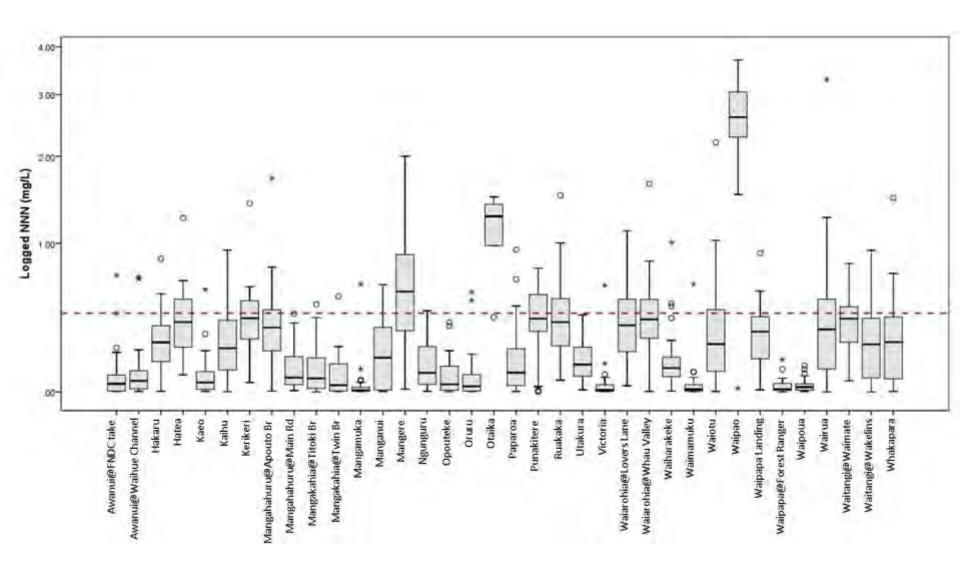


[&]quot;D" attribute state (exceeds "National Bottom Line"

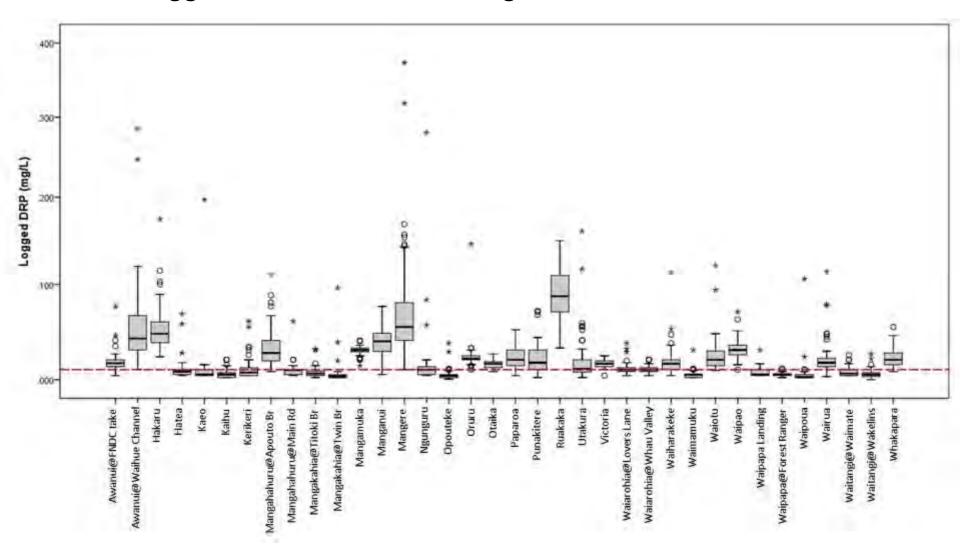
36 River Water Quality Monitoring Network sites

Comparison of River Water Quality Monitoring Network data (2009-2013) with the compulsory attributes in the National Policy Statement for Freshwater Management.

Value	Ecosystem Health								Human Health (Secondary contact recreation)	
Compulsory Attribute	Periphyton (mg chl-a/m²)	Ammonia Toxicity (mg NH ₄ -N/L)		Nitrate Toxicity (N0 ₃ -N/L)		Dissolved Oxygen (mg/L)		Cyanobacteria (cells/L)	E.coli/100 mL	
Compliance Statistic	Annual Maximum*	Annual Median	Annual Maximum.	Annual Median	Annual 95 th Percentile	7-day mean min (1 Nov to 30 Apr)	1-day min (1 Nov to 30 Apr)	80 th Percentile	Annual Median	
Awanui @ FNDC watertake	90	0.010	0.042	0.035	0.210	No Data	6.64	No Data	276	
Awanui @ Waihoe Channel	No Data	0.042	0.230	0.061	0.308	No Data	5.60	No Data	255	
Hakaru @ Topuni Creek Farm	492	0.015	0.067	0.238	0.409	No Data	7.28	No Data	249	
Hatea u/s Mair Park Bridge	57	0.014	0.054	0.351	0.559	No Data	7.90	No Data	309	
Kaeo @ Dip Road	No Data	0.009	0.028	0.043	0.287	No Data	7.46	No Data	757	
Kaihu @ gorge	60	0.008	0.036	0.277	0.598	No Data	7.48	No Data	177	
Kerikeri @ Stone Store bridge	22	0.011	0.053	0.383	0.590	No Data	7.60	No Data	272	
Mangahahuru @ Apotu Road	No Data	0.018	0.081	0.299	0.515	No Data	6.02	No Data	535	
Mangahahuru @ Main Road	9	0.009	0.047	0.124	0.211	No Data	7.38	No Data	316	
Mangakahia @ Titoki Bridge	No Data	0.011	0.035	0.081	0.240	No Data	8.06	No Data	223	
Mangakahia @ Twin Bridges	172	0.007	0.022	0.074	0.199	No Data	8.54	No Data	146	
Mangamuka @ Iwiatua Road	13	0.006	0.013	0.006	0.063	No Data	7.88	No Data	351	
Manganui @ Mitaitai Road	No Data	0.015	0.080	0.185	0.497	No Data	5.42	No Data	148	
Mangere @ Knight Road	No Data	0.028	0.155	0.480	0.895	No Data	5.06	No Data	523	
Ngunguru @ Coalhill Lane	No Data	0.014	0.022	0.126	0.265	No Data	8.20	No Data	423	
Opouteke @ suspension bridge	150	0.006	0.030	0.060	0.186	No Data	8.32	No Data	172	
Oruru @ Oruru Road	No Data	0.008	0.032	0.011	0.222	No Data	5.48	No Data	249	
Otaika @ Otaika Valley Road	5	0.020	0.232	1.187	1.613	No Data	7.13	No Data	607	
Paparoa @ walking bridge	No Data	0.019	0.272	0.123	0.399	No Data	4.50	No Data	508	
Punakitere @ Taheke Recorder	41	0.011	0.051	0.392	0.573	No Data	8.18	No Data	424	
Ruakaka @ Flyger Road	55	0.034	0.142	0.338	0.642	No Data	5.38	No Data	705	
Utakura @ Okaka Road Bridge	No Data	0.014	0.033	0.107	0.222	No Data	6.44	No Data	310	
Victoria @ Thompsons Bridge	49	0.006	0.018	0.007	0.087	No Data	7.38	No Data	153	
Waiarohia @ Whau Valley	47	0.010	0.058	0.342	0.552	No Data	7.06	No Data	474	
Waiarohia @ Lovers Lane	43	0.009	0.042	0.331	0.552	No Data	6.66	No Data	460	
Waiharakeke @ Stringers Road	79	0.016	0.124	0.105	0.246	No Data	6.32	No Data	379	
Waimamaku @ SH12	No Data	0.007	0.022	0.004	0.094	No Data	7.86	No Data	382	
Waiotu @ SH1	No Data	0.019	0.116	0.285	0.606	No Data	6.48	No Data	460	
Waipao @ Draffin Road	3	0.008	0.122	2.683	3.065	No Data	7.64	No Data	604	
Waipapa @ Forest Ranger	17	0.003	0.008	0.015	0.083	No Data	8.30	No Data	58	
Waipapa @ Waipapa Landing	48	0.011	0.026	0.262	0.434	No Data	6.97	No Data	189	
Waipoua @ SH12 Rest Area	6	0.006	0.014	0.020	0.060	No Data	8.74	No Data	88	
Wairua @ Purua	No Data	0.017	0.115	0.403	0.631	No Data	6.90	No Data	99	
Waitangi @ Watea	No Data	0.009	0.039	0.277	0.506	No Data	8.36	No Data	175	
Waitangi @ Waimate Road	72	0.011	0.032	0.355	0.471	No Data	7.40	No Data	450	
Whakapara @ cableway	No Data	0.009	0.077	0.273	0.571	No Data	6.86	No Data	258	

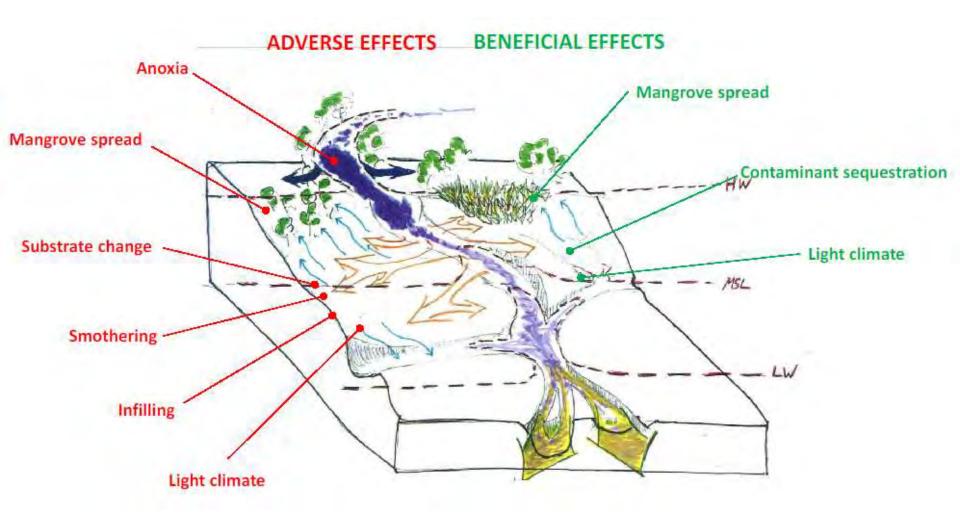

"A" attribute state

"B" attribute state

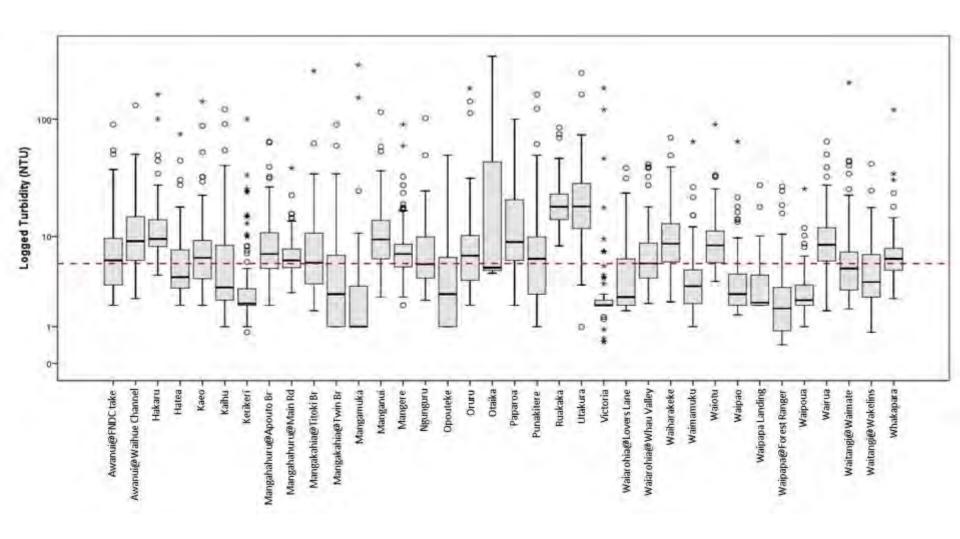

"C" attribute state

"D" attribute state (exceeds "National Bottom Line"

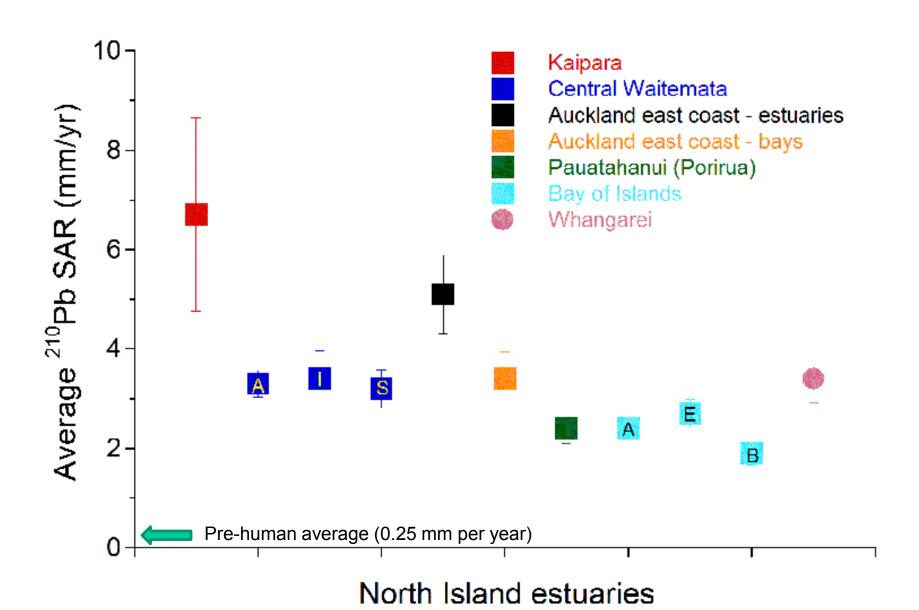
Nitrite-nitrite nitrogen (NNN) levels recorded across all 36 RWQMN sites from 2007 to 2011. The dashed red line represents the ANZECC 2000 low risk trigger value for NNN (<0.444 mg/L)



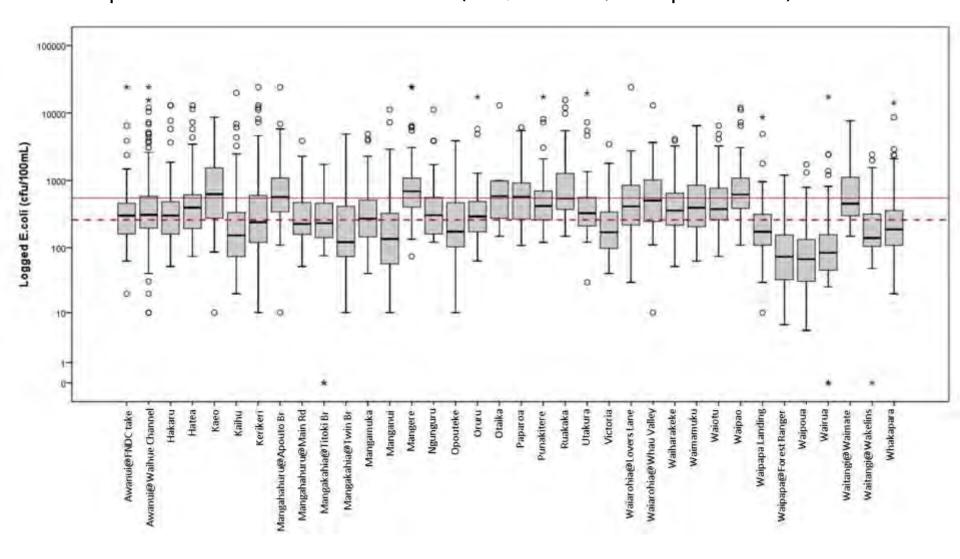
Dissolved Reactive Phosphorus (DRP) levels recorded across all 36 RWQMN sites from 2007 to 2011. The dashed red line represents the ANZECC 2000 low-risk trigger value for DRP (<0.01 mg/L)

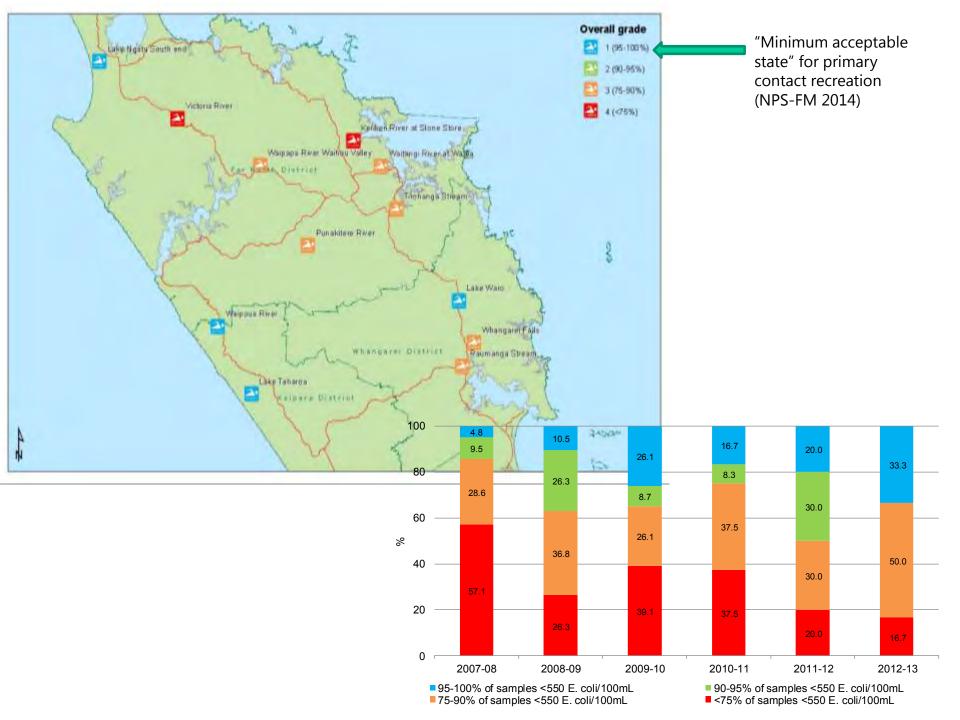

Fine sediment

Source: Dr Malcolm Green,

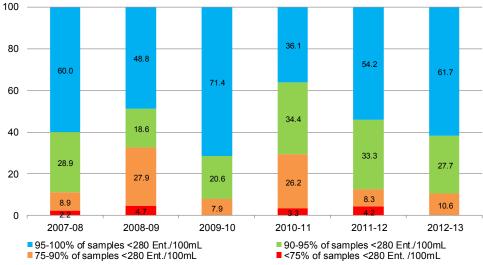

NIWA

Turbidity levels recorded across all 36 RWQMN sites from 2007 to 2011. The dashed red line represents the ANZECC 2000 low-risk trigger value for turbidity in lowland rivers (5.6 NTU)

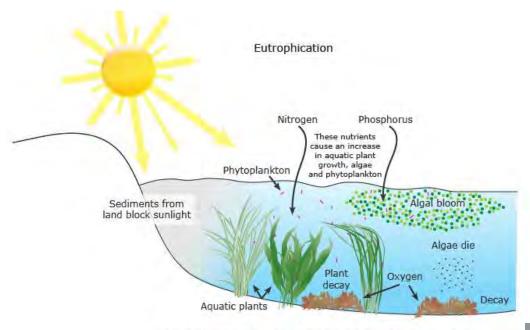


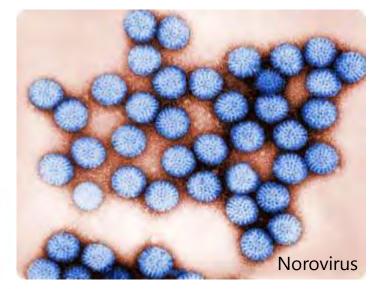

An order of magnitude (10 x) higher

Upper Whangarei Harbour

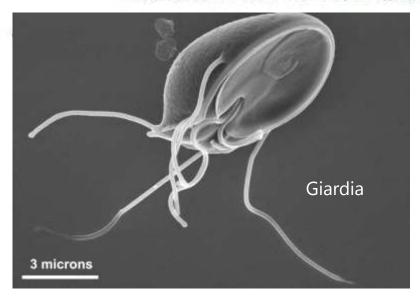

Source: Wade Doak

E.coli levels recorded across all 36 RWQMN sites from 2007 to 2011. The solid red line represents the "minimum" attribute state for primary contact recreation in the NPS-FM (540/100 mL, 95th percentile) and the dashed red line represents the A attribute state (260/100 mL, 95th percentile)

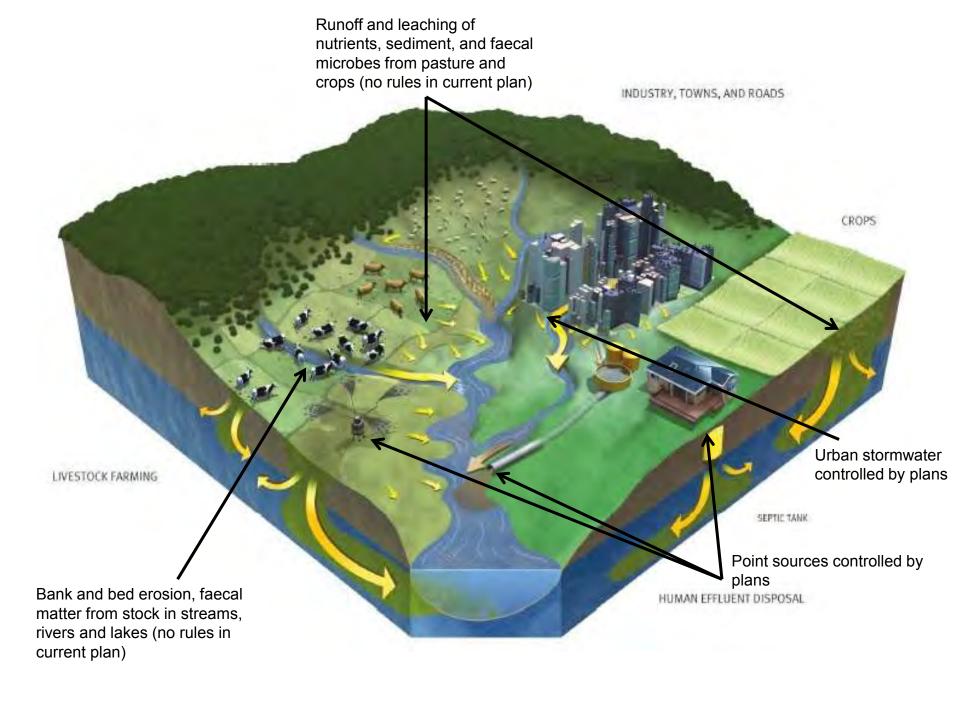



Discussion

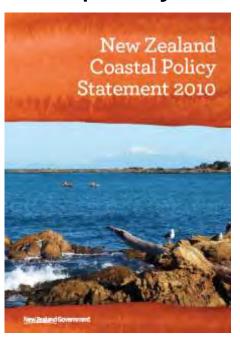
- Have we correctly identified / described the issues with Northland's water quality?
- Are there any issues that we have overlooked?



Managing diffuse sources of the "big three" contaminants



Eutrophication leads to a loss of food, habitat, and oxygen production


Fresh and coastal water quality managed in isolation

Issues with the management of Northland's water quality

Implementing recent national and regional

policy direction

Issues with the management of Northland's water quality

- Administrative issues with current policies and rules
 - Limited resourcing for monitoring and enforcing permitted activity rules
 - Limited knowledge of location, timing and nature of some activities
 - Lack of clarity and certainty in some permitted activity rules

General framework of the plans

- Broad narrative water quality objectives and no freshwater quality standards or numeric limits = lack of certainty
- Few water body/catchment specific provisions
- Best practicable option
- Land disposal
- Setbacks from water bodies
- Fresh water quality guidelines
- Minimise soil losses from land use activities

Discharges of animal effluent, other agricultural wastes, and fertilisers

- Major source of nutrients and faecal microbes in most water bodies
- Controls focussed on point sources
- Good progress with FDE but some noncompliance issues
- Vague fertiliser rule
- No controls on nutrient inputs or losses

Land disturbance activities

- Earthworks,
 vegetation clearance,
 land preparation,
 quarrying, livestock
- Major sources of fine sediment
- No controls on stock in beds of water bodies

Land disturbance activities

- Subjective and vague conditions of rules
- Regulatory
 overlaps between
 regional and
 district plans

Wastewater discharges

- Policies and rules for managing discharges from WWTPs robust
- Some WWTP's can be a significant source of nutrients, but is this an issue?
- Rules for septic systems do not recognise sensitive receiving environments
- Unauthorised wastewater overflows
- Can be a significant source of faecal microbes in some areas

Stormwater discharges

- Generally lower yields of big three contaminants from urban areas...but still a key source
- Heavy metals below guideline levels in most areas = low probability of adverse effects
- Inconsistencies between policy and rules
- Around half of networks are consented the other half purportedly* authorised by PA rule
- Appropriateness of discharge quality standards?

Industrial and trade waste discharges

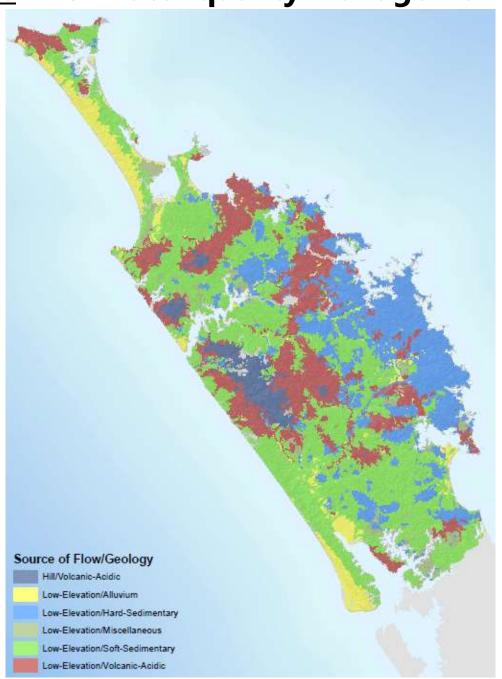
- The current policies and rules are robust
- No need for any significant changes

Discussion

- Have we correctly identified / described the issues with the management of Northland's water quality?
- Are there any issues that we have overlooked?
- What do you think are the main issues with the regional plans and the way that the council implements them?

Future management framework

- Consistent with national & regional policy direction
- New freshwater quality and quantity objectives
 - Applied to management units
 - Based on compulsory NOF attributes, and additional attributes?
 - Expressed in numeric and tight narrative terms
 - Give effect to Proposed RPS
- Limits environmental bottom lines?
- Address point source and diffuse sources


Values	Attributes		Water body type							
			Lakes	Rivers	Estuaries and harbours	Groundwater	Wetlands			
Ecosystem health /	Biological	Phytoplankton (chlorophyll a)	V		√					
Te Hauora o te Wai /		Periphyton		V						
mauri		Macrophytes	#	√	#					
		Invertebrates	#	√	#					
		Fish	#	#	#					
	Physical /	Nitrate toxicity		V						
	chemical	Ammonia toxicity	V	√	√					
		Total nitrogen	V							
		Total phosphorus	V							
		Dissolved inorganic nitrogen		√						
		Dissolved reactive phosphorus		√						
		Dissolved oxygen		V						
		рН		√						
		Temperature		√						
		Suspended sediment (visual clarity)		√	√					
		Suspended sediment (turbidity)		√	√					
		Deposited sediment (accumulation rates)			√*					
		Heavy metals	\checkmark	√	√					
		Organic compounds	√	√	V					
Human health / Te	Biological	E.coli (contact recreation)	$\sqrt{}$	√		V				
Hauora o te Tangata		Enterococci (contact recreation)			√					
		Faecal coliforms (shellfish consumption)			√					
		Planktonic cyanobacteria	$\sqrt{}$	√						
	Chemical	Nitrate toxicity				$\sqrt{}$				

Key

	\checkmark	Compulsory attributes with numeric states (Appendix 2, National Policy Statement for Freshwater Management 2014).
Î	V	Additional attributes with numeric states being considered by the council for inclusion in water quality objectives in regional plans.
Ī	#	Additional attributes with only narrative states being considered by the council for inclusion in water quality objectives in regional plans.
Ī		Attributes not available or not applicable in the near term.

^{*}The council is investigating approaches for managing sediment accumulation rates in the Kaipara Harbour, Whāngārei Harbour and Bay of Islands.

Example river water quality management units

Example river water quality objective for ecosystem health:

"Manage river water quality to ensure that the outcomes in the following table are met:

Value	Aquatic ecosystem health / Te Hauora o te Wai																					
	Outcomes																					
	Biological Attributes				Chemical Attributes										Physical Attributes							
	Fish	Invertebrates (MCI /	Periphyton (chl-a mg/m²)	Macrophytes (% cover)	DO (i	DO (mg/L)		DO (mg/L)		DO (mg/L)		DO (mg/L) Temp	Temp	Temp pH	N0 ₃ -N (toxicity)		NH ₃ –N (toxicity)		DIN	DRP	Toxicants (ANZECC	Water Clarity
		MCI-sb)			7 day	1 day			Med	95 Th %	Med	Max			2000)	(m)						
River water quality management unit					mean	min																
Hill – Volcanic acidic	Native fish communities have a	>119	>50 - ≤120	21-40	≥7.0 - <8.0	≥5.0 - <7.5	≤21	5.8< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.01 5	<0.3	99%	2.2						
Low elevation – alluvium	composition, diversity, and abundance	100-119	>50 - ≤120	21-40	≥7.0 - <8.0	≥5.0 - <7.5	≤21	6.5< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.01 5	<0.3	95%	1.8						
Low elevation – hard sedimentary	that are typical of the river	100-119	>50 - ≤120	41-60	≥7.0 - <8.0	≥5.0 - <7.5	≤23	6.5< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.01 5	<0.3	95%	1.6						
Low elevation – soft sedimentary	management unit	80-99	>50 - ≤120	41-60	≥7.0 - <8.0	≥5.0 - <7.5	≤23	6.5< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.01 5	<0.3	99%	1.4						
Low elevation – volcanic acidic		>119	>50 - ≤120	21-40	≥8.0	≥7.5	≤21	5.8< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.03	<0.5	99%	2.2						
Low-land – alluvium		100-119	>120 - ≤200	41-60	≥8.0	≥7.5	≤21	6.5< pH <8.5	≤1.0	≤1.5	≤0.03	≤0.05	<0.03	<0.5	95%	1.8						

Example water quality objective for human health:

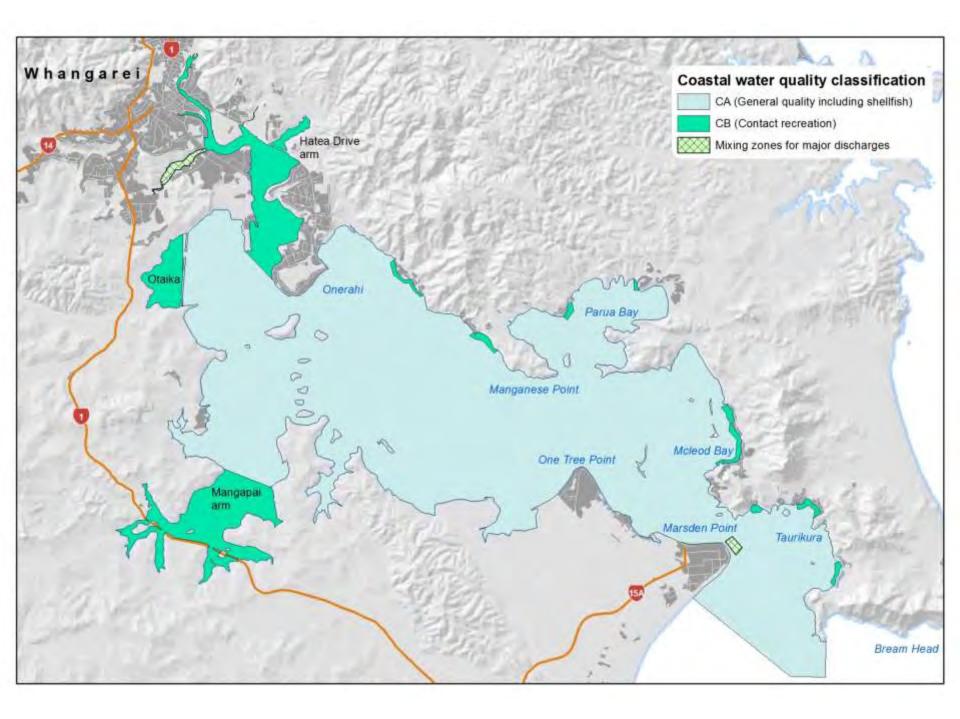
"Manage fresh and coastal water quality to ensure that the outcomes in the following table are met:

Value	Human health for contact recreation / Te Hauora o te Tangata									
		Outcomes								
		Biological Attributes								
	E.Coli	Enterococci								
	(cells / 100 mL)	(cells / mL)	(cells / mL)							
Water quality management unit										
Popular freshwater swimming sites	>260 and ≤540 (95 th percentile)	≤500 cells/mL of total cyanobacteria (80 th percentile)	Not applicable							
All other freshwater bodies (lakes and rivers)	>260 and ≤540 (annual median)	≤500 cells/mL of total cyanobacteria (80 th percentile)	Not applicable							
Estuaries and semi enclosed coastal waters	Not applicable	Not applicable	>140 and ≤280 (95 th percentile)							
Open coastal waters	Not applicable	Not applicable	≤140 (95 th percentile)							

Lake Water Quality Management Units

- High value lakes
 - Specific objectives and limits
- Dune lakes
 - Further classification required?
 - Default objectives and limits
- Other natural lake
 - Further classification required?
 - Default objectives and limits

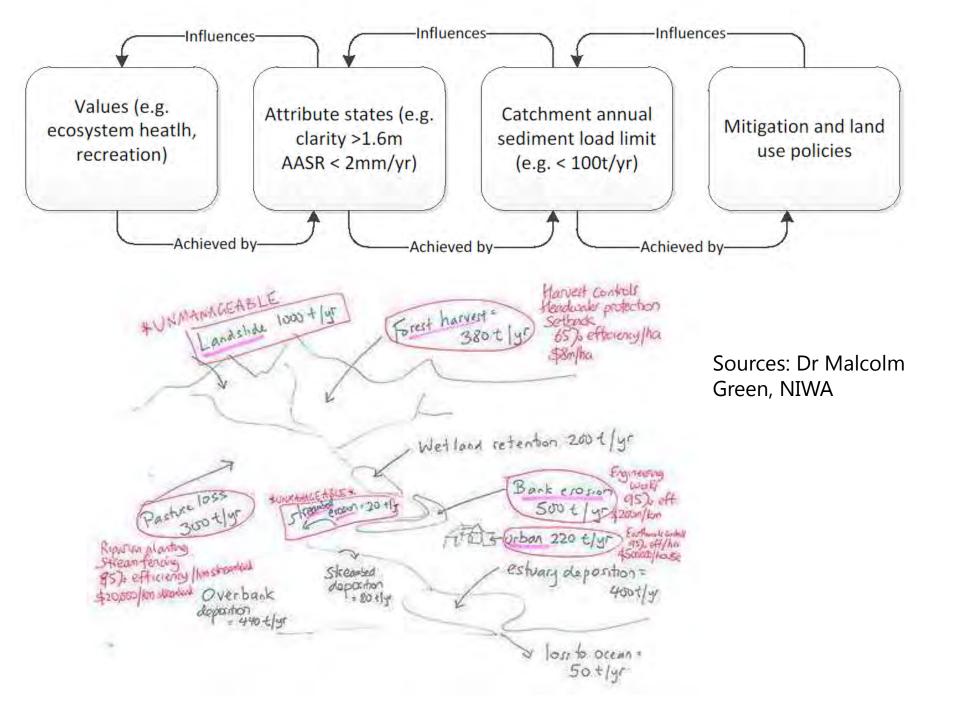
Example lake water quality objective for ecosystem health:


"Manage lake water quality to ensure that the outcomes in the following table are met:

Value	Aquatic ecosyster	m health / Te Hauora	a o te Wai												
	Outcomes														
Lake water quality management unit		Biological	Attribute	s			Chemical At	tributes	utes						
	Fish	Invertebrates	Phytoplankton (chl-a mg/m²)		Macrophytes	Ammonia (mg NH ₄ – N/L)		Total Nitrogen (mg/m³)	Total Phosphorus (mg/m³)	Heavy Metals					
	1 1311	invertebrates	Annual med.	Annual max.	macrophytes	Med	Max	Annual med.	Annual med.	- (ANZECC 2000)					
Dune lakes unit 1	Native fish communities are diverse and	composition that is characteristic of	≤2	≤10	Macrophyte communities are dominated by	≤0.03	≤0.05	≤160	≤10	99% species protection level					
Dune lakes unit 2	abundant and have a composition that is characteristic of		abundant and have a composition that is characteristic of the lake management unit	abundant and have a	abundant and have a	abundant and have a composition that	abundant and have a composition that	>2 and ≤ 5	≤10	naturally occurring native species	≤0.03	≤0.05	≤300	>10 and ≤20	99% species protection level
Dune lakes unit 3	the lake management unit in its natural condition			>2 and ≤ 5	≤10		≤0.03	≤0.05	>300 and ≤300	>10 and ≤20	99% species protection level				
Other natural lakes	Condition		>5 and ≤12	>10 and ≤25		≤0.03	≤0.05	>350 and ≤750	>20 and ≤50	99% species protection level					

What about coastal water quality?

- Largely a continuation of the existing approach for managing point source discharges, but:
 - Review and revise coastal water quality management units and water quality objectives
 - Replace water quality standards with numeric objectives
 - Manage fresh and coastal water quality together



What about coastal water quality?

- Investigating approaches to managing sediment in harbour/estuary catchments
- Specific objectives and limits for managing sediment in priority harbour catchments.
 First priorities:
 - Whangarei Harbour
 - Kaipara Harbour
 - Bay of Islands

Achieving fresh and coastal water quality objectives

- RMA s32
- We are not starting with a blank piece of paper

Reprint as at 12 September 2014

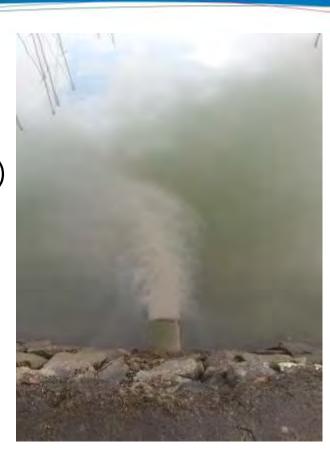
Resource Management Act 1991

Public Act 1991 No 69
Date of assent 22 July 1991
Commencement see section 1(2)

Contents

		Page	
	Title	33	
1	Short Title and commencement	33	
	Part 1		
	Interpretation and application		
2	Interpretation	.33	
2AA	Definitions relating to notification	63	
2A	Successors	64	
3	Meaning of effect	64	
3A	Person acting under resource consent with permission	64	
4	Act to bind the Crown	65	
4A	Application of this Act to ships and aircraft of foreign States	67	
	Part 2		
	Purpose and principles		
5	Purpose	68	
6	Matters of national importance	68	

Wastewater discharges


- Retain and enforce current rules
- Permit wastewater overflows
- Network consents
- Network consents plus a containment standard
- Prohibit wastewater overflows

Stormwater discharges

- Retain and enforce current rules
- Permit discharges to the coastal marine area (currently require resource consent)
- Control discharges to fresh and coastal waters (currently permitted subject to conditions)
- Network consents
- Stronger controls on high contaminant yielding sites, e.g. parking lots

Discharges of animal effluent, other agricultural wastes, and fertilisers

- Change the activity status for animal effluent discharges
- Refine the rules for fertiliser discharges
- Control nutrient inputs/losses
- Incentivising / requiring GMPs
- Non-regulatory initiatives (e.g. riparian buffers, wetlands)

Land disturbance activities

- Eliminate regulatory overlaps
- Require that the council is notified in advance of certain permitted activities being undertaken
- Refine permitted activity rules to provide greater clarity and certainty on required GMPs
- Stronger controls on the access of stock to the beds and margins of water bodies

Land disturbance activities

- Revise definition of erosion prone land
- Setbacks from water bodies
- Revise permitted activity thresholds for earthworks and vegetation clearance
- Amend definition of the Riparian Management Zone
- Non-regulatory initiatives

Discussion

- Do you agree with our suggested approach for setting water quality objectives and limits?
- What do you think "avoiding over-allocation" should look like in a planning framework (e.g. non-complying or prohibited rules)?
- Have we correctly identified the range of options for improving the management of point source and diffuse discharges? Are there any other solutions to addressing the issues?
- What do you think are the best option(s) for each activity?

Wrap up

Next steps

Workshops – Oct 2014

Review complete - Dec 2014

Draft regional plan released - mid 2016

Proposed regional plan notified – mid 2017

Workshop evaluations

Thank you

Ben Tait

Policy Specialist - Water

09 insert your direct dial here

bentait@nrc.govt.nz

www.nrc.govt.nz

Stay connected

0800 002 004

www.nrc.govt.nz

24/7 Environmental Hotline 0800 504 639

