

Design Modelling
Whangarei Catchment (M01)

Northland Regional Council

16 October 2025

Document Status

Version	Doc type	Reviewed by	Approved by	Date issued
01	Draft	Lachlan Inglis	Ben Hughes	27/05/2021
01	Final	Lachlan Inglis	Ben Hughes	16/10/2025

Project Details

Project Name Whangarei Catchment (M01)

Client Northland Regional Council

Client Project Manager Sher Khan & Matt De Boer

Water Technology Project Manager Bertrand Salmi
Water Technology Project Director Ben Hughes

Authors Alvin Mingjun Li, Lachlan Inglis

Document Number M01_20010434_R02V02_Validation_Report

Cover Photo: Helen Beech (https://www.rnz.co.nz/news/national/350285/flooding-in-northland-forces-school-and-road-closures)

COPYRIGHT

Water Technology Pty Ltd has produced this document in accordance with instructions from Northland Regional Council for their use only. The concepts and information contained in this document are the copyright of Water Technology Pty Ltd. Use or copying of this document in whole or in part without written permission of Water Technology Pty Ltd constitutes an infringement of copyright.

Water Technology Pty Ltd does not warrant this document is definitive nor free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

6 Churchill Place
Cambridge New Zealand 3434
Telephone +64 27 777 0989
NZBN 94290481 881 80

CONTENTS

1	PROJECT OVERVIEW	4
2	STUDY AREA	6
3	MODEL CALIBRATION	8
4	DESIGN MODELLING	19
4.1	Overview	19
4.2	Model Parameters	19
4.2.1	Rainfall Intensity-Duration-Frequency	19
4.2.2	Design Rainfall Temporal Patterns	20
4.2.3	Losses	21
4.2.4	Boundaries	24
5	MODELLING RESULTS	25
5.1	Modelled Result Processing/Filtering	25
6	VERIFICATION OF DESIGN FLOWS	34
6.1	Flood Frequency Analysis	34
6.2	Regional Estimation Methods	35
6.2.1	NIWA New Zealand River Flood Statistics Portal	35
6.2.2	SCS method	36
6.2.3	Rational Method	36
6.3	Verification Results	37
7	SUMMARY	40
LIST (OF FIGURES	
Figure 1		5
Figure 2		7
Figure 6	•	9
Figure 6	-	10
Figure 6	-9 Modelled and Gauged flows at Waiarohia River at Lovers Lane – 2011 Flood Event	10
Figure 6	-10 Modelled and Gauged water levels at Waiarohia River at Lovers Lane – 2011 Flood Eve	nt 11
Figure 6	-11 Modelled and Gauged flows at Raumanga Creek at Bernard St – 2011 Flood Event	11
Figure 6		12
Figure 6		12
Figure 6	-14 Modelled and Gauged Levels at Otaika River at Kay – 2011 Flood Event	13
Figure 6	-15 Modelled and gauged rating curve comparison at Whareora Rd gauge	13
Figure 6	-16 Modelled and gauged rating curve comparison at Lovers Lane gauge	14
Figure 6		14
Figure 6		15
Figure 6	 Comparison between modelled flood level and Survey flood level – January 2011 event (upstream of Whareora Rd gauge) 	16

Figure 6-20	Comparison between modelled flood level and Survey flood level – January 2011 event (township of Whangarei)	17
Figure 6-21	Comparison between modelled flood level and Survey flood level – January 2011 event (East of Otaika Valley Rd)	18
Figure 3-1	Example of design rainfall grid (12-hour, 1% AEP rainfall) for M01	20
Figure 3-2	Temporal pattern for design rainfall of 12-hour, 1% AEP event	21
Figure 3-3	Hydraulic model material layer	23
Figure 4-1	Design modelling of 1% flood depth	27
Figure 4-2	Design Modelling of 1% AEP flood velocity	29
Figure 4-3	Design modelling of 1% AEP Flood hazard	31
Figure 4-4	Design modelling of 1% AEP flood depth zoomed at Whangaeri	33
Figure 5-1	Available streamflow gauges within Whangarei catchment	34
Figure 5-2	Example of flood frequency curve of Log Pearson III distribution fit	35
Figure 5-3	Verification of design modelling results against hydrological estimates	39
LIST OF	TABLES	
Table 6-2	Calibrated hydraulic roughness and rainfall losses values – Whangarei catchment	8
Table 6-3	Summary of calibration results – Whangarei catchment	S
Table 6-4	Quantitative assessment of January 2011 event for Whangarei catchment	S
Table 3-1	Key Modelling Information	19
Table 3-2	1% AEP Design rainfall depth	21
Table 3-3	Design model parameters	22
Table 4-1	Flood hazard classification	25
Table 5-1	Summary of 1% AFP neak flow comparison	38

1 PROJECT OVERVIEW

Overview

Water Technology was commissioned by Northland Regional Council (NRC) to undertake a region-wide flood modelling study. The study area encompassed the entire Northland Regional Council area which covers an area of over 12,500 km², with the exclusion offshore islands. The aim of this project was to map riverine flood hazard zones across the entire Northland region and update existing flood intelligence.

Modelling approach

This project used a 2D Direct Rainfall (also known as Rain on Grid) approach for hydraulic modelling and has provided flood extents for a defined range of design storms. The hydraulic modelling software TUFLOW was used. TUFLOW is a widely used software package suitable for the analysis of flooding. TUFLOW routes overland flow across a topographic surface (2D domain) to create flood extent, depth, velocity and flood hazard outputs that can be used for planning, intelligence and emergency response. The latest release of TUFLOW offers several recent advanced modelling techniques to improve modelling accuracy which where practical, were tested and adopted in this project.

This study delineated and modelled 19 catchments, shown in Figure 1-1. To validate the adopted methodology and model parameters used in the design modelling, 9 catchments were calibrated against recent (and historic) flood events. The calibration/validation methodology is documented in a standalone report *NRC Riverine Flood Mapping - Calibration Report – R01* and is referred to throughout this document as the *Calibration Report*.

This report documents the calibration and design modelling methodology for Whangarei Catchment (M01), noting that this catchment was calibrated to the January 2011 flood event.

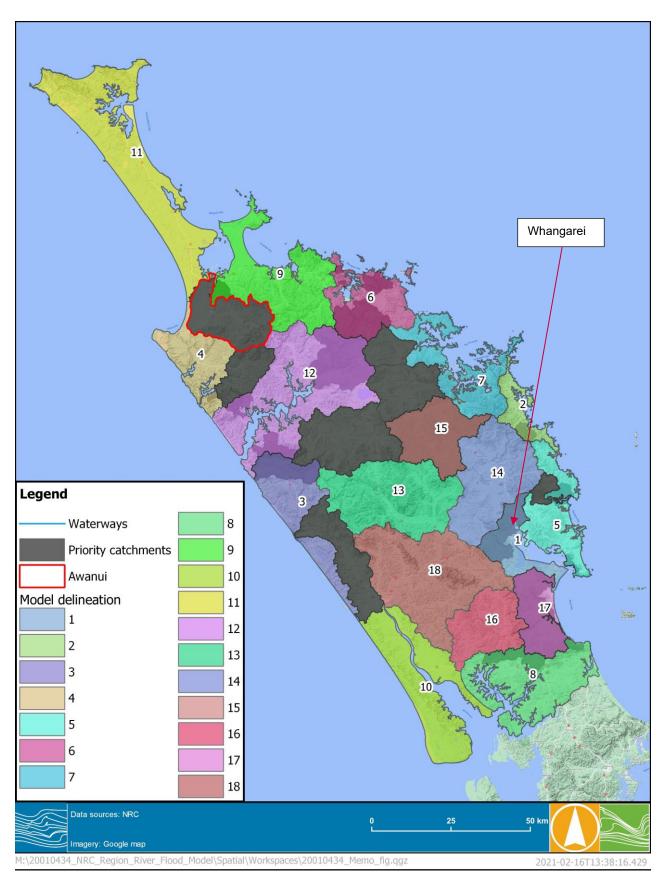


FIGURE 1-1 MODEL DELINEATION

2 STUDY AREA

The model 01 catchment is a combination of mountainous and coastal catchments. It includes the Whangarei catchment and several small catchments, including Puwera, Otaika, Raumanga, Hatea and Waiarohia catchments, covering a total area of approximately 233 km² with Whangarei its largest urban area. The major waterways include Hatea River to the north, Raumanga Stream and Otaika River to the west and Mangapai River in the south of the study area. Figure 2-1 displays the study area of the catchment model 01.

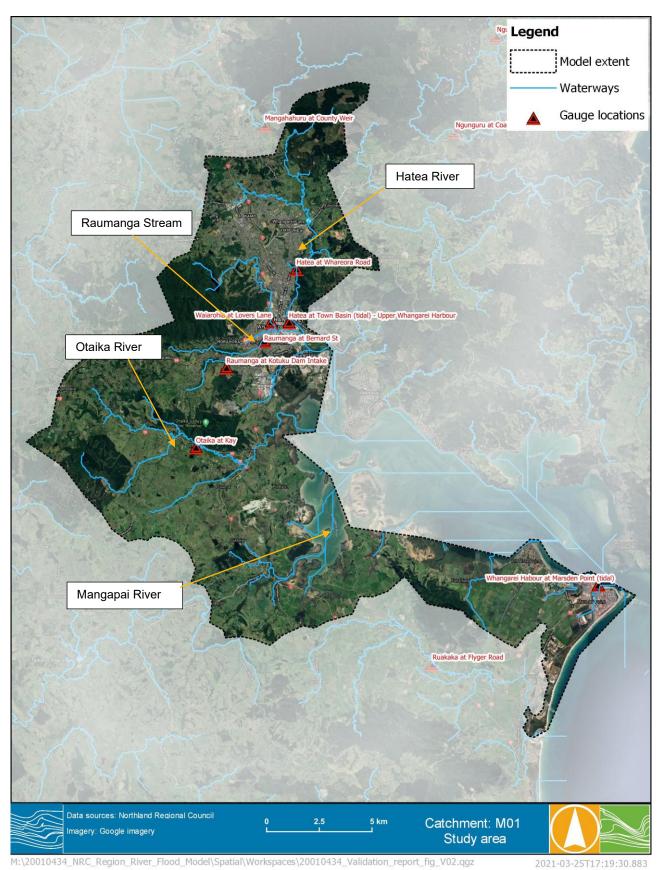


FIGURE 2-1 STUDY AREA

3 MODEL CALIBRATION

The M01 catchment was modelled as part of the initial calibration to confirm the methodology was fit-for purpose and was able to replicate flood behaviour across the study area. The model parameters developed as part of this catchment's calibration along with the Kawakawa and Awanui catchments formed the basis of the model design parameters adopted elsewhere in the NRC region and for areas where calibration was not possible. The M01 catchment was calibrated to the January 2011 flood event.

Model parameters

There are 4 streamflow gauges within the catchment used for model calibration include Hatea at Whareora Rd, Waiarohia at Loavers Lane, Raumanaga at Bernard St and Otaika at Kay. All of these gauges have the flow and water level records for the entire event. Table 3-1 summaries the calibrated parameters for the Whangarei Catchment.

TABLE 3-1 CALIBRATED HYDRAULIC ROUGHNESS AND RAINFALL LOSSES VALUES – WHANGAREI CATCHMENT

Hydrological areas	Land use types	Manning's n	Initial loss (IL) - mm	Continuing loss (CL) – mm/hr
Upstream of Bernard St	Forest	0.08	20	4
	Grassland	0.05	20	4
Upstream of Whareora Rd	Forest	0.04	55	10
	Grassland	0.02	55	10
Other areas within	Forest	0.08	30	5
Whangarei catchment	Grassland	0.05	30	5
Entire Whangarei	Cropland – perennial	0.04	20	2
catchment	Cropland – annual	0.04	20	2
	Wetland – open water	0.04	0	0
	Wetland – vegetated	0.05	10	1
	Urban areas	0.08	5	1.5
	Urban areas 2	0.02	5	1.5
	Waterways	0.055	0	0
	Waterways 2	0.035	0	0
	Other	0.06	15	1.5

Calibration results

Table 3-2 summarises the comparison between the observed and the modelled values and the quantitative assessment of the model calibration is shown in Table 3-3.

The modelled results at these stations have shown a good match to the gauged records in terms of their shape and timing. The modelled water levels match well with the gauged records with all the 4 gauges having the peak water levels within 300 mm difference compared with that observed. However, the modelled flows are generally lower than recorded flows with the exception of an overestimated flow at the Otaika at Kay gauge. TAs discussed with the previous catchments, it is likely that uncertainty in the development of the rating curve may have led to this underestimation of flows. Figure 3-1 to Figure 3-8 show the modelled and recorded hydrographs and water level (rating curve) comparison. Model results were found to closer where the rating

curves provided a closer match. The Hatea River at Whareora Rd showed the biggest difference in rating curve shapes between the modelled and recorded.

Figure 3-13 to Figure 3-15 display the difference plot of the modelled water level compared with the surveyed flood level points. It should be noted that some of the points are overlapped with others in these maps. There are 127 flood level points within the catchment, with 79 flood level points (approx. 62%) within 300 mm of recorded. Flood levels through the urban area appear to be over-estimated. This is likely the result of a lack of pit and pipes in the model within the urban area.

TABLE 3-2 SUMMARY OF CALIBRATION RESULTS - WHANGAREI CATCHMENT

	Peak flow (m³/s)		Time to peak diff. (hour)	V	Volume (ML)			Peak WSE (m OTP)			
Location	Modelled	Gauged	Diff.	uni. (nour)	Modelled	Gauged	Diff.	Modelled	Gauge	Diff. (mm)	
Whareora Rd	255.51	412.53	-38%	0.75	5540471	9647089	-43%	15.33	15.19	136.50	
LoversLane	78.50	87.43	-10%	0	1918745	2854975	-33%	5.68	5.81	-129.70	
BernardSt	67.21	87.05	-23%	0.67	2735009	2319260	18%	6.91	7.09	-177.10	
Otaika_Kay	207.29	136.23	52%	1.33	5067763	4305984	18%	14.45	14.35	104.20	

TABLE 3-3 QUANTITATIVE ASSESSMENT OF JANUARY 2011 EVENT FOR WHANGAREI CATCHMENT

Location	Peak flow within 15% of recorded (Y/N)	Volume within 15% of recorded (Y/N)	Peak WSE within 300mm of recorded (Y/N)	Timing to peak within +/- 1 hour	Model flow within 10% of recorded flow at the same stage (Y/N)	
Whareora Rd	N	N	Υ	Υ	N	
LoversLane	Υ	N	Υ	Υ	N	
BernardSt	Ň	N	Y	Υ	N	
Otaika_Kay	N	N	Y	N	Υ	

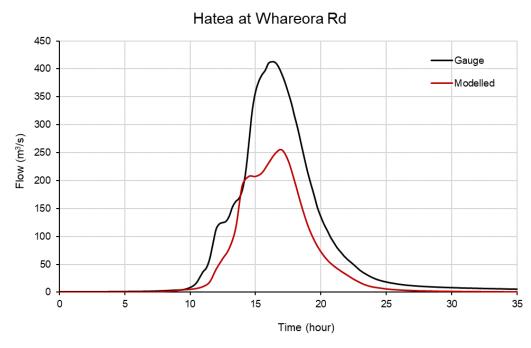


FIGURE 3-1 MODELLED AND GAUGED FLOW AT HATEA RIVER AT WHAREORA RD - 2011 FLOOD EVENT

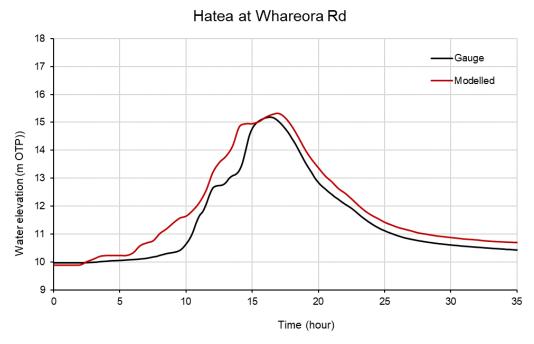


FIGURE 3-2 MODELLED AND GAUGED WATER LEVELS AT HATEA RIVER AT WHAREORA RD – 2011 FLOOD EVENT

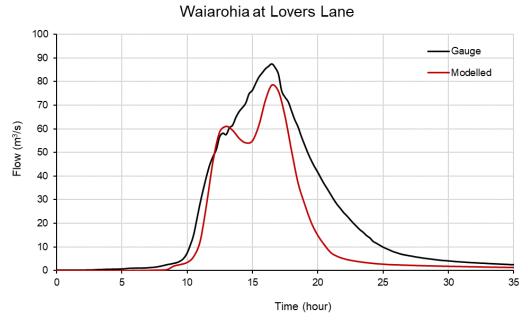


FIGURE 3-3 MODELLED AND GAUGED FLOWS AT WAIAROHIA RIVER AT LOVERS LANE – 2011 FLOOD EVENT

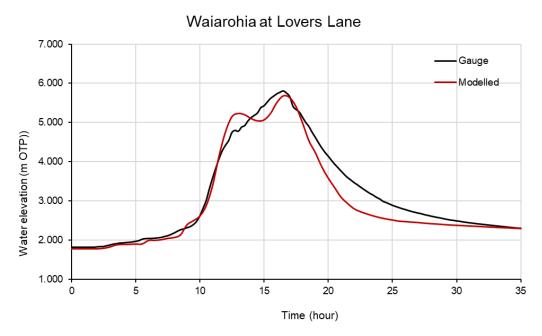


FIGURE 3-4 MODELLED AND GAUGED WATER LEVELS AT WAIAROHIA RIVER AT LOVERS LANE – 2011 FLOOD EVENT

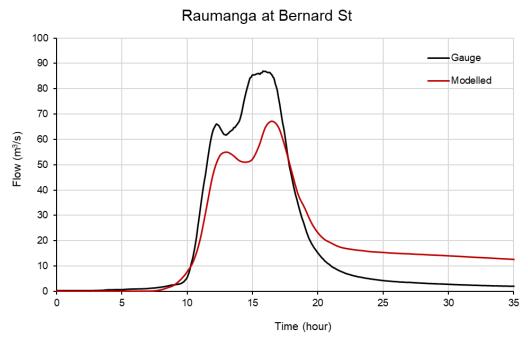


FIGURE 3-5 MODELLED AND GAUGED FLOWS AT RAUMANGA CREEK AT BERNARD ST – 2011 FLOOD EVENT

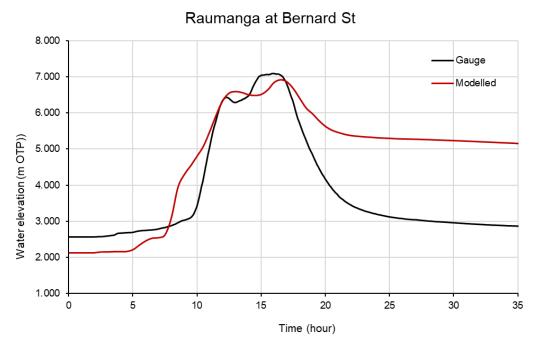


FIGURE 3-6 MODELLED AND GAUGED LEVELS AT RAUMANGA CREEK AT BERNARD ST – 2011 FLOOD EVENT

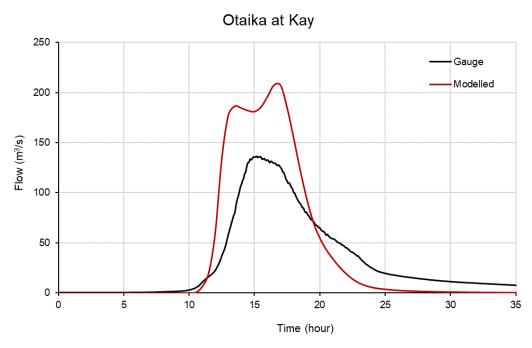


FIGURE 3-7 MODELLED AND GAUGED FLOWS FOR OTAIKA RIVER AT KAY - 2011 FLOOD EVENT

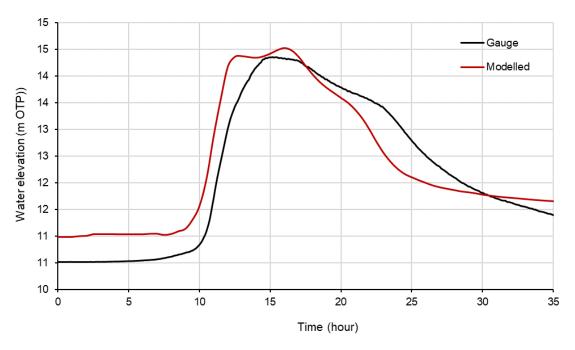


FIGURE 3-8 MODELLED AND GAUGED LEVELS AT OTAIKA RIVER AT KAY – 2011 FLOOD EVENT

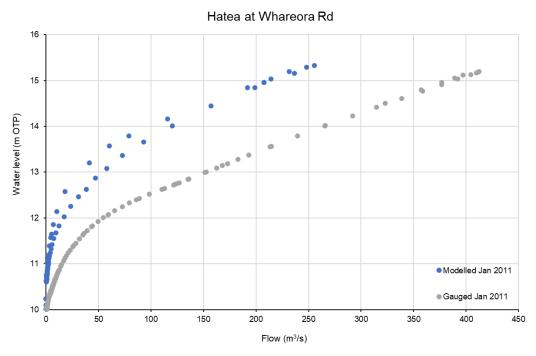


FIGURE 3-9 MODELLED AND GAUGED RATING CURVE COMPARISON AT WHAREORA RD GAUGE

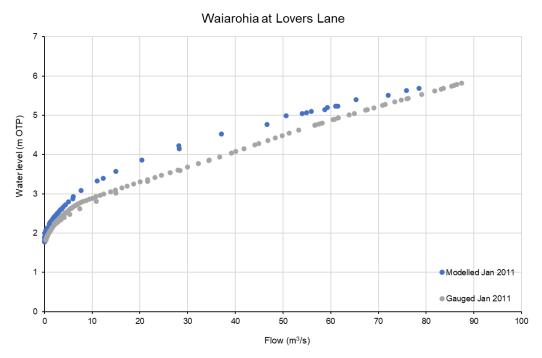


FIGURE 3-10 MODELLED AND GAUGED RATING CURVE COMPARISON AT LOVERS LANE GAUGE

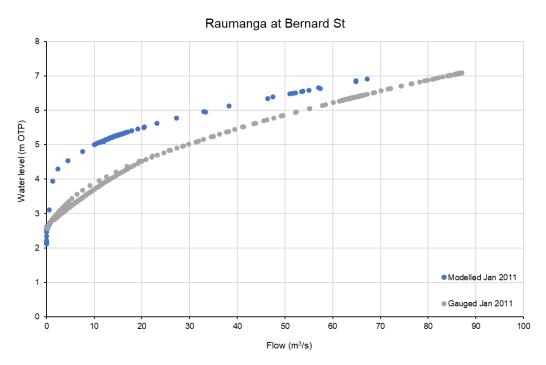


FIGURE 3-11 MODELLED AND GAUGED RATING CURVE COMPARISON AT BERNARD ST

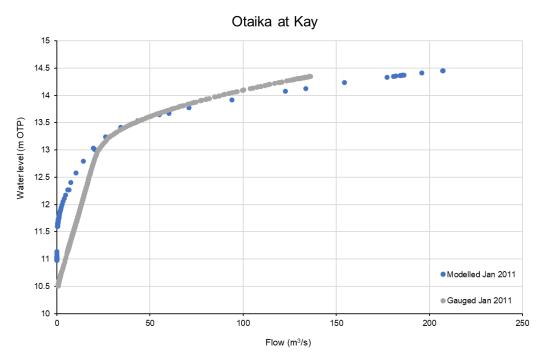


FIGURE 3-12 MODELLED AND GAUGED RATING CURVE COMPARISON AT KAY

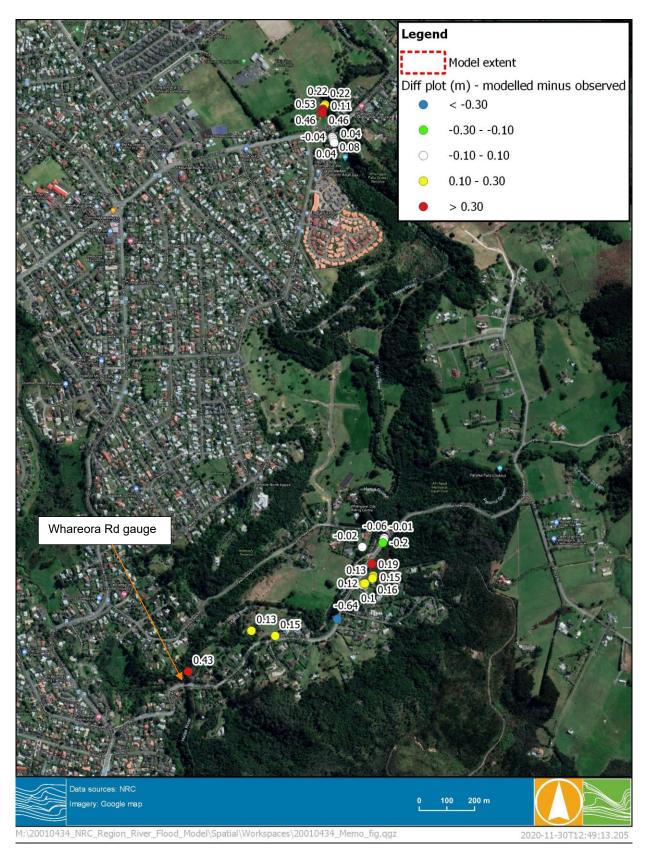


FIGURE 3-13 COMPARISON BETWEEN MODELLED FLOOD LEVEL AND SURVEY FLOOD LEVEL – JANUARY 2011 EVENT (UPSTREAM OF WHAREORA RD GAUGE)

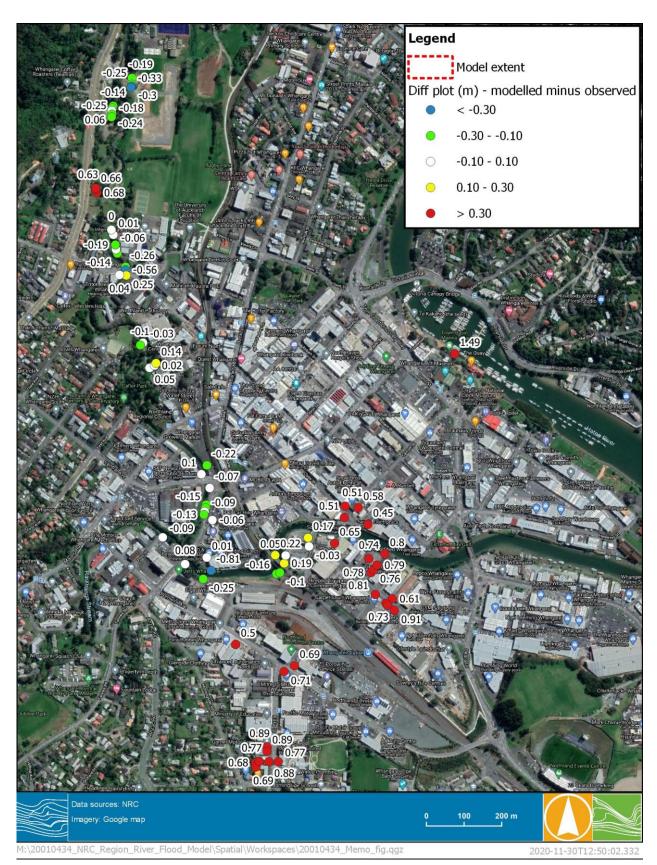


FIGURE 3-14 COMPARISON BETWEEN MODELLED FLOOD LEVEL AND SURVEY FLOOD LEVEL – JANUARY 2011 EVENT (TOWNSHIP OF WHANGAREI)

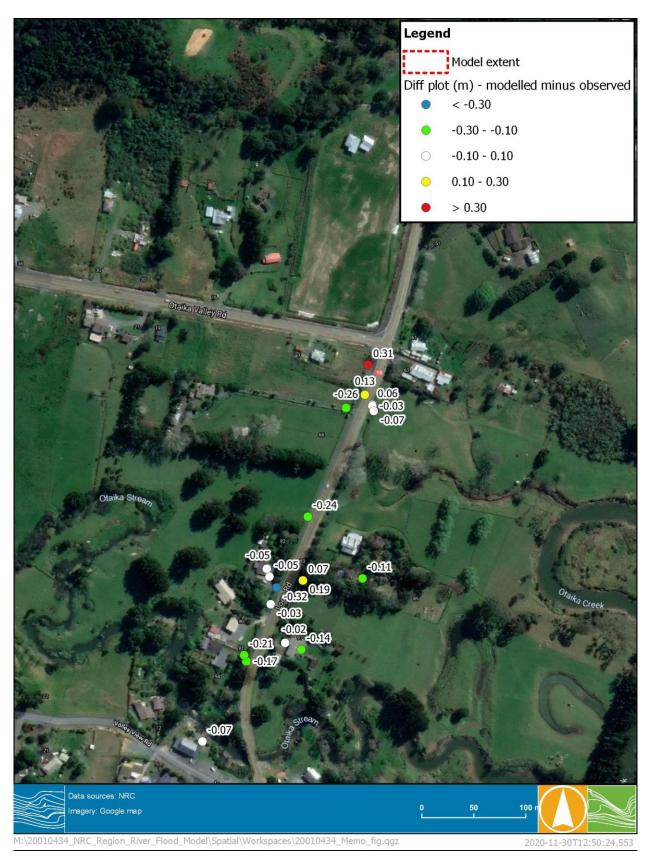


FIGURE 3-15 COMPARISON BETWEEN MODELLED FLOOD LEVEL AND SURVEY FLOOD LEVEL – JANUARY 2011 EVENT (EAST OF OTAIKA VALLEY RD)

4 DESIGN MODELLING

4.1 Overview

A hydraulic model (TUFLOW) of the Whangarei catchment (M01) was constructed to model overland flooding. A range of storm durations were run and results for each Annual Exceedance Probability (AEP) event were enveloped to ensure the critical duration was well represented across each part of the study area. The merged results captured the maximum flood level and depth of the range of design event durations modelled.

Table 4-1 and the following sections detail the key modelling information used in the development of the hydraulic model.

TABLE 4-1 KEY MODELLING INFORMATION

Terrain data	NRC 1m LiDAR without filling of sinks but includes the "burning of creek alignments' through embankments				
Model type	Direct rainfall model				
Model build	Build: 2020-10-AA-iSP-w64				
Rainfall	See Sections 4.2.1 and 4.2.4				
Losses	See Section 4.2.3				
Boundaries	See Section 4.2.4				
Modelling solution scheme	TUFLOW HPC (adaptive timestep)				
Modelling hardware	GPU				
Modelling technique	Sub-grid-sampling (SGS)				
Model grid size	10m with 1m SGS				

4.2 Model Parameters

A range of model parameters were adopted based on the calibration of the January 2011 event for Whangarei catchment. Details of these are outlined below.

4.2.1 Rainfall Intensity-Duration-Frequency

Intensity-Duration-Frequency (IDF) tables were developed by NIWA through the High Intensity Rainfall Design System (HIRDSV4)¹. Design rainfall totals for durations from 10 minute up to 120 hours were developed for design modelling and were developed at 179 rainfall gauge sites across the wider study area. The IDF tables cover a range of magnitude events from 1 in 1.58 ARI through to 1 in 250 ARI along with climate change predictions (Representative Concentration Pathway 4.6, 6 & 8.5) up to the year 2100. For this catchment, eightrainfall gauges were used with a spatially weighted grid of rainfall totals created for design modelling. Figure 4-1 shows the 12-hour cumulative rainfall grid for the 1% AEP event along with the rainfall gauge locations used to create the grid.

_

¹ Accessed via https://hirds.niwa.co.nz/

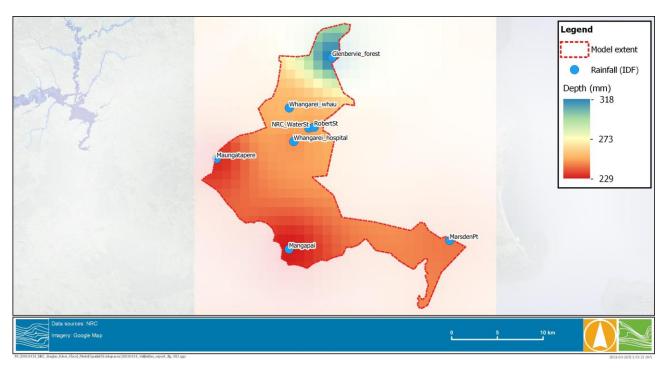


FIGURE 4-1 EXAMPLE OF DESIGN RAINFALL GRID (12-HOUR, 1% AEP RAINFALL) FOR M01

4.2.2 Design Rainfall Temporal Patterns

Design temporal patterns (rainfall hyetographs) were provided by NRC for design modelling. These were developed as part of a previous project undertaken by Macky & Shamseldin (2020)². The project aimed to provide multiple design hyetographs and a better representation of rainfall variability across the Northland region, replacing the single set of design hyetographs previously developed.

The HIRDS design temporal pattern is recommended for design modelling of Northland catchments². Hence, the design hyetographs for the rainfall gauges were developed using the rainfall IDF data at available rainfall gauges for the catchment. Although a 12-hour hyetograph is suitable for design modelling for most Northland catchments as suggested², a range of durations were selected; including 1-hour, 6-hour, 12-hour and 24-hour for each of the following AEP's 10%, 2% and 1% AEP to ensure that the event critical duration was identified across the catchment. The shorter durations were critical in the upper parts of the catchment, while the longer 24-hour durations were critical in the lower catchment, where flood volumes are generally the predominant factor in generating peak flood levels.

Table 4-2 summarises the 1% AEP rainfall depth (based on IDF from HIRDSV4) for different event durations at each rainfall gauge and Figure 4-2 shows the design cumulative rainfall across the different gauges for the 12-hour duration event. Considering a single temporal pattern is assigned (i.e. HIRDS hyetograph), the proportional amount of rainfall applied through time for a given duration (e.g., 6-hour) is generally consistent (as shown in Figure 4-2) across the catchment area.

_

² Macky & Shamseldin (2020) - Northland Region-wide Hyetograph review

TABLE 4-2 1% AEP DESIGN RAINFALL DEPTH

Course location	1% AEP (mm)					
Gauge location	1-hour	6-hour	12-hour	24-hour		
Hatea At Glenbervie Forest 546301	72	185	253	329		
Hatea At Robert St 547338	64	151	199	254		
Mangapai A54821	62	140	181	228		
Maungatapere A54721	63	140	184	237		
Waiarohia at NRC Water St 547339	67	151	198	252		
Whangarei Harbour At Marsdenpt 548215	70	155	193	230		
Whangarei Hospital A54734	66	149	197	254		
Whangarei Whau Vly A54735	68	153	202	259		

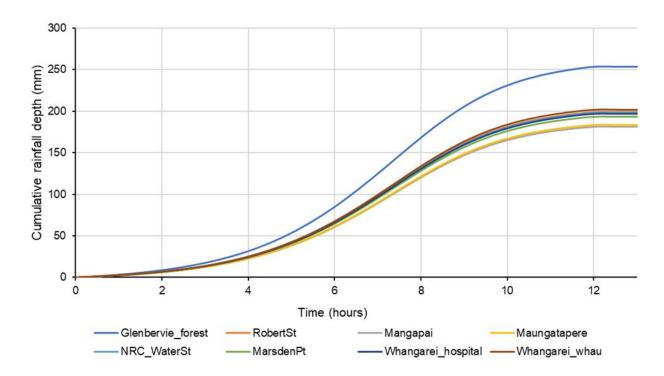


FIGURE 4-2 TEMPORAL PATTERN FOR DESIGN RAINFALL OF 12-HOUR, 1% AEP EVENT

A climate change scenario (for the 1% AEP events) was modelled for the 2081-2100 timeframe, for the RCP 8.5. This is based on the increases in rainfall intensity of 35%, 30%, 26% and 22% respectively for 1-hour, 6-hour, 12-hour and 24-hour duration events.

4.2.3 Losses

Model cells were assigned a Manning's "n" (surface roughness), initial loss and a continuing loss based on land use types and hydrologically important characteristics. Table 4-3 summarises the adopted roughness and loss parameters. It should be noted these parameters were calibrated to a historic event where streamflow gauges were present within the catchment. Figure 4-3 displays the roughness layer based on the land use type, showing most land use is forest and grassland.

TABLE 4-3 DESIGN MODEL PARAMETERS

Hydrological areas	Land use types	Manning's n	Initial loss (IL) – mm	Continuing loss (CL) – mm/hr	
Upstream of Bernard St	Forest	0.08	20	4	
	Grassland	0.05	20	4	
Upstream of Whareora Rd	Forest	0.04	55	10	
	Grassland	0.02	55	10	
Other areas within	Forest	0.08	30	5	
Whangarei catchment	Grassland	0.05	30	5	
Entire M13 catchment	Cropland – perennial	0.04	20	2	
	Cropland – annual	0.04	20	2	
	Wetland – open water	0.04	0	0	
	Wetland – vegetated	0.05	10	1	
	Urban areas	0.08	5	1.5	
	Urban areas 2	0.02	5	1.5	
	Waterways	0.055	0	0	
	Waterways 2	0.035	0	0	
	Other	0.06	15	1.5	

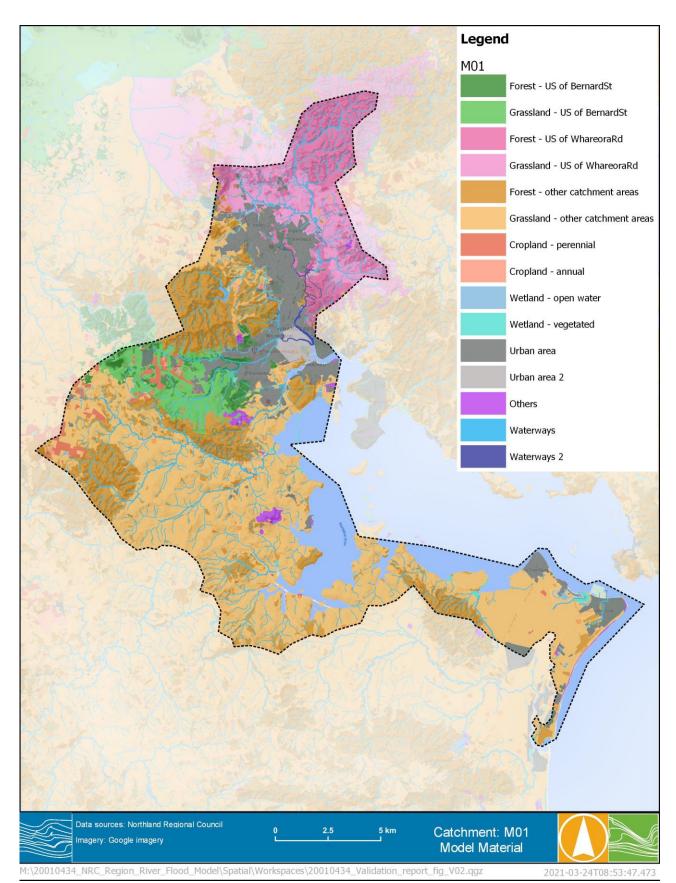


FIGURE 4-3 HYDRAULIC MODEL MATERIAL LAYER

4.2.4 Boundaries

As Whangarei catchment is an coastal catchment, a static tail-water (i.e. 1396 mm OTP) outflow boundary based on the 2 year ARI tide level³ at Marsden Point gauge was used at the Whangarei Harbour at Marsden Point and a stage-discharge boundary (i.e. HQ) at the downstream of Mangapai River and the eastern side of the Harbour was used for the design modelling. A a 1.2 m sea level rise was adopted for climate change runs in line with the project brief. In the calibration modelling, the boundary at Marsden Point gauge was a tidal boundary (i.e. type HT), using the tidal records during the event.

There is no upstream inflow coming from upstream catchments applied in this catchment model.

³ MWH, 2010 *Priority Rivers – Flow Assessment, Sea Level Rise and Storm Surge*, prepared for Northland Regional Council

5 MODELLING RESULTS

5.1 Modelled Result Processing/Filtering

Design modelling consisted of running the model for four storm durations (1-hour, 6-hour, 12-hour and 24-hour) with the results enveloped for each design event (i.e. 1%, 2% and 10% AEP) to ensure the critical duration was well represented across each part of the catchment. Each model run produced gridded results, including depth, water surface elevation (WSE), hazard (Z0) and velocity. Several post-processing steps were required to produce the final design modelling outputs. These are described as follows:

Step 1:

The modelling results are firstly merged to produce a single data set for each AEP from the storm durations modelled. For example, the flood depth output is produced by merging the depth results of the four different durations within each AEP. This allows for the critical storm duration across each part of the catchment to be represented (i.e. the short intense storms in upper reaches and longer duration storms in the lower parts of the catchment).

Step 2:

■ The maximum gridded results are then remapped to a finer DEM grid using the 5-m LiDAR data. This allows the flood extent to be more accurately displayed on the map and the higher resolution gridded results (i.e. same resolution as the 5-m DEM) to be produced.

Step 3:

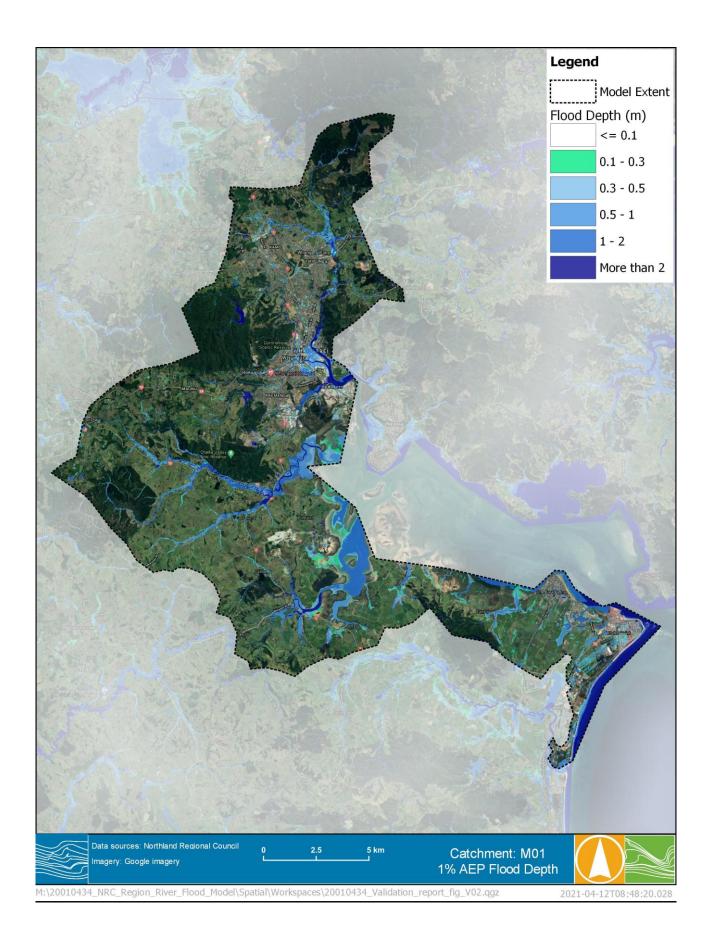

■ Finally, the remapped results are post-processed by filtering out depths below 100mm and puddle areas less than 2000m² as agreed with NRC.

Figure 5-1, Figure 5-2 and Figure 5-3 respectively show the final post-processed flood depths, velocity and hazard of the 1% AEP design event modelled for M13. Figure 5-4 shows the flood depth map zoomed in at a township as an example. It is noted that the hazard classification is based on the following criteria:

TABLE 5-1 FLOOD HAZARD CLASSIFICATION

Hazard classification	Hazard – VxD (m²/s)
Low	< 0.2
Low to Moderate	0.2 to 0.4
Moderate	0.4 to 0.6
Moderate to High	0.6 to 0.84
High	> 0.84

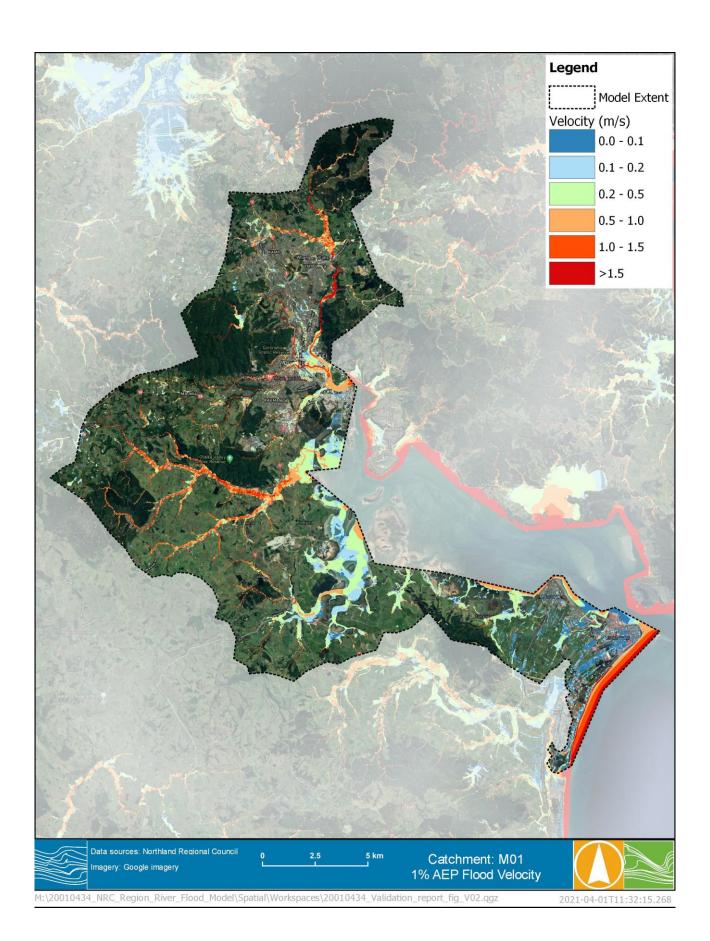


FIGURE 5-1 DESIGN MODELLING OF 1% FLOOD DEPTH

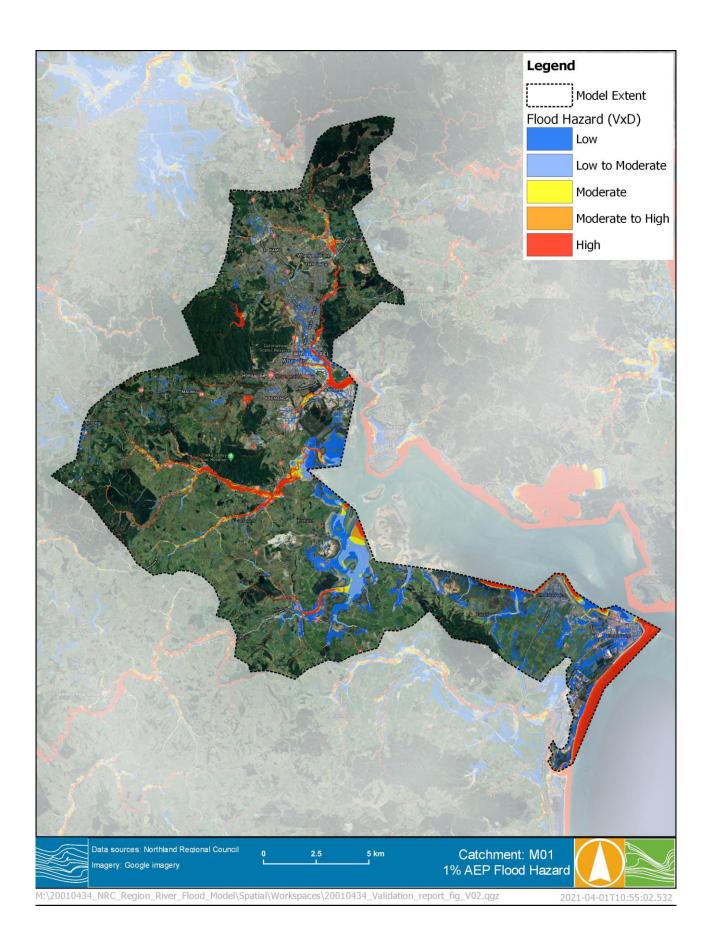


FIGURE 5-2 DESIGN MODELLING OF 1% AEP FLOOD VELOCITY

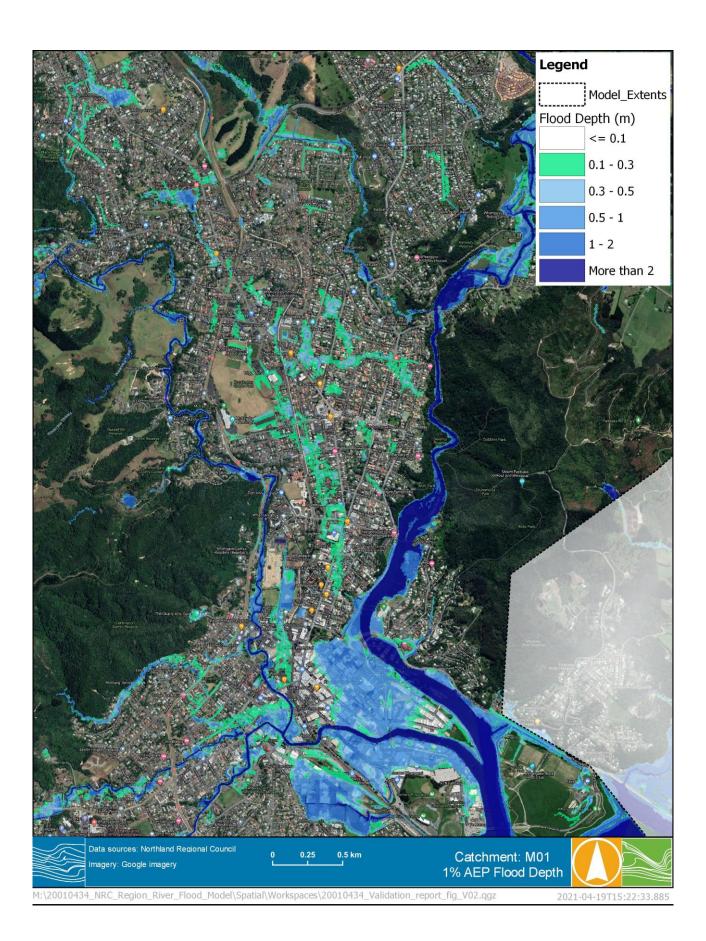

Northland Regional Council | 16 October 2025 Whangarei Catchment (M01)

FIGURE 5-3 DESIGN MODELLING OF 1% AEP FLOOD HAZARD

FIGURE 5-4 DESIGN MODELLING OF 1% AEP FLOOD DEPTH ZOOMED AT WHANGAERI

6 VERIFICATION OF DESIGN FLOWS

Flow lines were included at gauge locations in the hydraulic model as 2D Plot Output (2D PO) for calibration and design events. This allows flow hydrographs and peak flows to be extracted at these locations. Figure 6-1 displays the location of streamflow gauges in the Whangarei catchment.

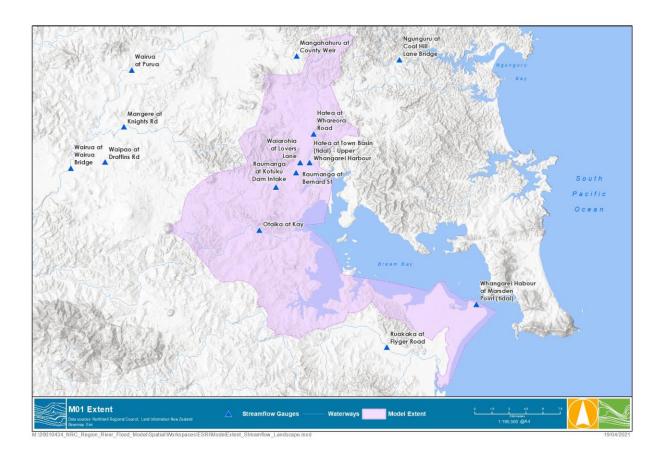


FIGURE 6-1 AVAILABLE STREAMFLOW GAUGES WITHIN WHANGAREI CATCHMENT

The modelled peak flow for the 1% AEP design flood was compared with hydrological estimates, including FFA, rational method and SCS method, as well as observations from 2011 and historic maxima from streamflow gauge records.

6.1 Flood Frequency Analysis

A Flood Frequency Analysis (FFA) was undertaken for streamflow gauging stations with at least 25 years of record. The length of record for can affect the reliability of the FFA especially for the estimation of major flood events (e.g. 1% AEP). The design flow estimates provided additional verification against the design hydraulic modelling results. The streamflow gauging stations that were selected for FFA and the corresponding 1% AEP flow estimates can be found in the Calibration Report (R01).

The annual series (maximum streamflow values for each year of gauge record) were calculated and input into FLIKE. FLIKE is a software package used for FFA and provides five different probability distributions for fitting the historical records. Log Pearson III distribution is commonly used across New Zealand and south east Australia to fit streamflow records and was used for all gauges within the study area. The FFA results showed that the probability distribution had a relatively good fit at all stations.

An example flood frequency curve fitting the annual maximum streamflow values with the Log Pearson III distribution is shown in Figure 6-2. The design curve generated by the probability distribution shows a good fit with the historic records in more frequent events (i.e. 1 in 10 year or more frequent) but may slightly overestimate the design flows for rare events (e.g. 1% AEP flow). The flattening of the historic points may also suggest limitations with the current rating curves. Overall, the design curve shows a good fit with the tight confidence intervals indicating low uncertainty within these estimates.

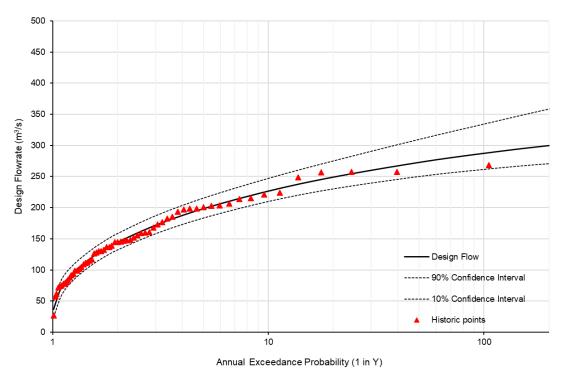


FIGURE 6-2 EXAMPLE OF FLOOD FREQUENCY CURVE OF LOG PEARSON III DISTRIBUTION FIT

6.2 Regional Estimation Methods

For catchments where a suitable streamflow gauge record was not available, additional estimation methods were used to provide design flow verification. These methods are based on empirical estimations using catchment area and design rainfall totals to verify design flows. These methods were checked for each streamflow gauge location within the study area and are described below.

6.2.1 NIWA New Zealand River Flood Statistics Portal

The New Zealand River Flood Statistics portal⁴ provides peak flood estimation at streamflow gauging stations and the entire river system in New Zealand completed in 2018. The design estimates can be extracted from the portal are:

- Flood Frequency estimates (at flow gauge).
- Flood Frequency estimates, noted as Henderson & Collins 2018 (at river reach).
- Rational Method HIRDS V3 (at river reach).

.

⁴ NIWA Flood Frequency tool, accessed via: https://niwa.co.nz/natural-hazards/hazards/floods

The flood frequency estimates given by the portal are determined using the Mean Annual Flow method developed by Henderson & Collins (2018)⁵.

6.2.2 SCS method

The Soil Conservation Service (SCS) method, first developed by the U.S. Department of Agriculture's Soil Conservation Service, calculates peak flood flow based on rainfall and land-cover-related parameters. It is the recommended method for stormwater design in the Auckland region, providing a useful comparison. The peak flow equation is:

$$Q = (P - Ia)^2 / (P - Ia + S)$$

where:

- Q is run-off depth (millimetres)..
- P is rainfall depth (millimetres)
- S is the potential maximum retention after run-off begins (millimetres).
- la is initial abstraction (millimetres), which is 5 millimetres for permeable areas and zero otherwise.

The retention parameter S (measured in millimetres) is related to catchment characteristics through:

$$S = (1000/CN - 10) 25.4.$$

The value of the curve number (CN) represents the run-off from 0 (no run-off) to 100 (full run-off) and it is influenced by soil group and land use. A CN value of 50 was used for the SCS estimation of this catchment.

The run-off depth (Q) is then converted to a peak flow rate using the SCS unit hydrograph.

6.2.3 Rational Method

The Rational Method is widely used across both New Zealand and Australia. The equation is based on catchment area and design rainfall. The equation is:

$$Q = C i A / 3.6$$

where:

Q is the estimate of the peak design discharge in cubic meters per second

- C is the run-off coefficient
- i is rainfall intensity in mm/hr hour, for the time of concentration
- A is the catchment area in km².

⁵Henderson, R.D., Collins, D.B.G., Doyle, M., Watson, J. (2018) *Regional Flood Estimation Tool for New Zealand Final Report Part 2*. NIWA Client Report

6.3 Verification Results

Table 6-1 summarises the comparison of 1% AEP peak flow estimates with the modelled values at five streamflow gauging stations in the Whangarei catchment and the differences between the estimation methods and modelled results can be visualised in Figure 6-3.

The rational method and the SCS method are only applicable for relatively small catchments, with the SCS method limited to 12 km². The catchment sizes for most of these gauge locations range 20 to 44 km² with the exception of Kotuku Dam Intake gauge. These equations are therefore subject to great uncertainty in summarising catchment characteristics.

The modelled design peak flows at Raumanga at Bernard St gauge and Walarohia at Lovers Lane gauge have shown a good match to the empirical estimates and tend to sit within a reasonable range of the design flow estimates. It should be noted that these are the only two gauges within the catchment that have sufficient period of records to conduct FFA estimates.

At Hatea at Whareora Rd gauge, the empirical methods tend to underestimate the design flow in comparison to the modelled flow and the historic records. In contrast, the modelled design flow has a good match to the empirical estimates at the Kotuku Dam Intake gauge.

At Otaika at Kay gauge, the modelled peak flow is significantly greater than the design flow estimates. But this gauge only has 9 years of records and hence, FFA estimate is not applicable to verify the modelled design flow.

The use of empirical method estimations provides an additional degree of verification for streamflow gauges with less than 25 years of record. It is also noted that the calibration process identified uncertainty with the streamflow records for high flows. The uncertainty of high flow extrapolation at these gauges could result in further uncertainty of flow estimate methods that rely solely on streamflow gauge data.

TABLE 6-1 SUMMARY OF 1% AEP PEAK FLOW COMPARISON

	Hydraulic	model (m³/s) Record	Records at gauge (m³/s)			npirical esti (m³/s)	mates	NIWA Flood Frequency Tool 2018 (m ³ /s)	
Gauge location	Critical duration	Modelled peak	July 2020 peak	Highest on record	FFA		scs	Rationa method	· INIVIA	NIWA – H&C 2018
Raumanga at Bernard St	6 hr	91.5	87.0	87.0	118.	.63	44.2	66.8	138.8	37
Walarohia at Lovers Lane	6 hr	114.0	87.4	113.3	139.	.46	50.1	75.6	150.1	101
Hatea at Whareora Rd	6 hr	365.9	412.5	512.9	N/A	4*	107.8	107.7	N/A	122
Raumanga at Kotuku Dam Intake	6 hr	16.1	87.0	N/A	N/A	4*	23.8	18.2	90.0	21
Otaika at Kay	6 hr	351.3	136.2	136.2	N/A	4*	94.9	63.1	N/A	96

^{*}Gauges have less than 25 years of records so FFA not applicable.

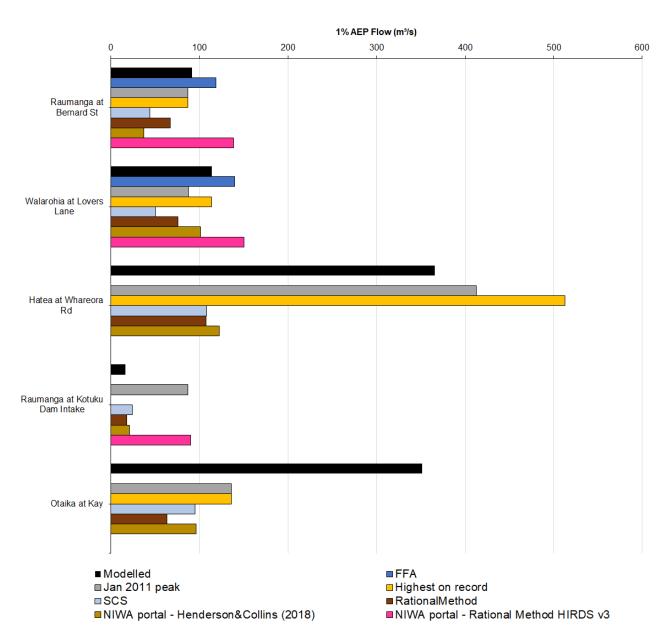


FIGURE 6-3 VERIFICATION OF DESIGN MODELLING RESULTS AGAINST HYDROLOGICAL ESTIMATES

7 SUMMARY

The Whangarei catchment model (M01) was calibrated to the January 2011 flood event. The design modelling of this catchment consisted of four storm durations (1-hour, 6-hour, 12-hour and 24-hour) for each design AEP (i.e. 1%, 2% and 10% AEP). Design flood extents and gridded results, including depth, water surface elevation, velocity and hazard were produced and delivered to NRC.

The modelled 1% AEP design flow was verified against several design flood estimation methods at five streamflow gauges. The modelled design flows at these gauges tends to sit at a reasonable range of the design flow estimates with the exception of the Otaika at Kay gauge. The comparison of design flows provides a general validation check of the modelled results given the accuracy of these estimation methods can be constrained by the availability of gauged flow records (where used) and general limitations with empirical design estimates.

When considering the scope and the scale of this project, the current modelling results are considered fit for use. Modelling outputs can be used to identify flood hazard and potential flood risk. It can also inform planning decisions, infill flood mapping between detailed flood studies and provide a basis for broad emergency management exercises.

