Estimated SH1 Holiday Peak Hour State Highway Traffic Volumes

Summer holiday peak hour traffic data is not available for SH1 in the vicinity of Waipu. It is therefore necessary to estimate holiday peak hour traffic volumes from the AADT estimated at this location, and the relationship between AADT and summer holiday peak hour traffic volumes for a comparable site. To assist with this assessment, WK-NZTA provided hourly directional traffic count data for the year 2019 (the last whole year pre-covid) from the two nearest continuous count stations on SH 1 :

- SH1 near Te Hana (Telemetry Site 17, ID: 01N00336) which is about 35 km south of the site. 358 days counted.
- SH1 south of Whangarei (Nth of Maungakaramea Rd Puwera, Continuous site ID: 01N00274) which is about 29 km north of the site. 202 days counted.

From the data provided, plots were generated of the average hourly two-way traffic volume for both sites by time of day and day of work. The graph for SH1 near Te Hana is shown as Figure 1 and that for SH1 Maungakaramea as Figure 2.

Figure 1 - Hourly two-way AADT by day of week/time of day on SH1 Te Hana.

Figure 2 - Hourly two-way AADT by day of week/time of day on SH1 Maungakaramea.
The corresponding graph for SH1 near Waipu was provided by WK-NZTA and is shown in Figure 3.

Figure 3 - Hourly two-way AADT by day of week/time of day on SH1 Waipu.
It is evident from Figure 2 that on weekdays SH1 Maungakaramea has noticeable volume peaks in the morning and afternoon commuter peak periods. On weekends there are high levels of traffic between but excluding the AM and PM peak periods, and generally, the weekend traffic is lower than the weekday traffic. This suggests that SH1 Maungakaramea has a significant commuter traffic function.

A different pattern is evident for both the SH1 Te Hana profile in Figure 1 and the SH1 Maungakaramea profile in Figure 3. Both profiles show high levels of traffic between the AM
and PM peak periods on weekdays. Weekend traffic is higher than weekday traffic, peaking mid-afternoon.

On this basis the 2019 annual hourly traffic data for SH1 Te Hana has been chosen to determine the relationship between AADT and summer holiday peak hour traffic volumes for SH1 at Waipu.

The day in 2019 with the $95^{\text {th }}$ percentile ($18^{\text {th }}$ highest) daily traffic volume southbound on SH 1 Te Hana was Sunday $17^{\text {th }}$ March 2019 while the day with the $95^{\text {th }}$ percentile ($18^{\text {th }}$ highest) daily traffic volume northbound on SH1 Te Hana was Friday $15^{\text {th }}$ November 2019.

Friday $15^{\text {th }}$ November 2019 was the busier day overall (14,688 vehicles per day total for both directions) but it had a lower peak hour volume (1057 vehicles per hour total in both directions from noon to 1 pm). On Sunday $17^{\text {th }}$ March 2019 the total two-way traffic volume was 13,805 vehicles per day but the peak hour volume was 1,397 vehicle per hour in both directions (from 2 to 3 pm). The latter time also corresponded to the highest peak hour for southbound traffic (906 vehicles per hour).

The holiday peak hour was therefore chosen as Sunday $17^{\text {th }}$ March 2019 from 2pm to 3pm, with a southbound volume of 906 vehicles per hour and a northbound volume of 491 vehicles per hour.

The two-way AADT for SH1 at Te Hana in 2019 was 11,438 vehicles per day. Thus, the holiday peak hour traffic volume southbound on SH1 at Te Hana in 2019 was 7.9% of the two-way AADT while the holiday peak hour traffic volume northbound on SH1 at Te Hana in 2019 was 4.3% of the two-way AADT.

The nearest SH1 count station to the proposed site in Waipu is count station ID: 01N00309 which is located about 400 metres south of Glenmohr Road and 650 metres north of Schultz Rd and is some 5 kilometres south of the site. WK-NZTA has no complete year of directional hourly traffic data available for this site, only the estimated AADT. The latest AADT available pre-covid is an AADT of 10,225 vehicles per day for 2019. Assuming that the traffic patterns on SH1 at Waipu are similar to the traffic patterns at SH1 at Te Hana, it is estimated that the $95^{\text {th }}$ percentile holiday peak maximum hourly traffic volume southbound on SH 1 at Waipu in 2019 was 7.9% of the two-way AADT, i.e., 810 vehicles per hour, and the holiday peak maximum hourly traffic volume northbound on SH1 at Waipu in 2019 was 4.3% of the twoway AADT, i.e., 439 vehicles per hour.

APPENDIX B

Waka Kotahi safety records: 2017-2022

Untitled query
Saved sites
21803-BP Waipu
Crash year

Plain English report
6 results from your query.
1-6 of 6

Crashroad	sider rad	Feature	$\underset{\substack{\text { iitance } \\ \text { fitande } \\ \text { foodifieture }}}{\text { for }}$	Direction	Reference tation	$\frac{\text { Routi }}{\text { position }}$	Easting	Northing	Longitude	Latitude	$\underline{1}$	Date	$\frac{\text { Payef }}{\text { veek }}$	Iime	Descripioion of events	Crashtators	Surface condition	$\frac{\text { Natural }}{\text { Iight }}$	Weather	Junction	entrol				$\frac{\frac{5}{6}}{\frac{5}{5}}$
SH1	MILLBROOK ROAD		286 m	s			178889	6016506	174.427881	-35.987005	202017171	21/11/2020	sat	08.52	Motorcycle1 SDB on SH 1 hit rear end of Motorcycle2 stopped/moving slowly	MOTORCYCLE1, alcohol test below limit, following too closely MOTORCYCLE3, alcohol test below limit, suddenly braked MOTORCYCLE2, alcohol test below limit	Dry	$\begin{aligned} & \text { Bright } \\ & \text { Simt } \end{aligned}$	Fine	Ni (Default)	nil	0	2	1	1
SH1N	тНе Bralgh		240 m	N			179912	601599	174.431091	-35.93734	201899213	30/09/2018	sun	06,30	Car/Wagon 1 SOB on Sh1 lost control; went off road to left, Car/Wagon1 hit non specific fence, non specific traffic sign	CAR/WAGON1, alcohol test below limit, fatigue due to lack of sleep	ory	overcast	Fine	$\begin{array}{\|l\|} \substack{\text { (Dil } \\ \text { (Defut) }} \end{array}$	Unknown	0	0	0	
the bralgh	CABEF LANE		${ }^{330 \mathrm{~m}}$	w			179266	6016878	174.433226	-35.939976	202238333	25/07/2022	Mon	16:30	SUV1 WOB on The Braigh lost control; went off road to right, SUV1 hit traffic sign, ditch, fence	SUV1, alcohol suspected, drugs suspected, lost control under acceleration, too far right	Wet	overcast	Heavy rain	$\begin{gathered} \boldsymbol{c}_{\text {(Dil }}^{\text {(Deful) })} \end{gathered}$	Unknown	0	0	1	
тне вrach	SH1		580m	s			179934	601694	174.435776	.35.98315	20189990	20/11/2018	Tue	20:30	Car/Wagonl WDB on The braigh hit Truck2 merging from the right	TRUCK2, failed to give way entering roadway from driveway	wet	Dark	Light	Driveway	Nil	0	0	0	
the eraigh	SHIN			1			178859	60.6715	174.429535	.35.985500	20175908	31/12/2017	sun	13:36	Van 1 WDB on The braigh hit rear end of Car/Wagon2 stop/slow fo cross traffic	VAN1, alcohol test below limit, following too closely CAR/WAGON2, alcohol test below limit	Dry	overcast	Fine	${ }^{\top} \text { Junction }$	stop	0	0	0	
WAIPU Bypass	THE BRAIGH		190 m	N			178983	6016867	174.430782	.35.984116	201800167	20/06/2018	Wed	08:55	SUV1 NDB on WAIPU BYPASS hit Truck2 headon on straight, SUV1 hit non specific fence, Truck2 hit non specific ditch	SUV1, alcohol test below limit, too far right TRUC.K2, alcohol test below limit	Wet	overcast	Heary rain	$\begin{aligned} & \text { Nil } \\ & \text { (Default) } \end{aligned}$	Unknown	1	0	0	

1-6 of 6

Traffic Growth on SH1

Figure 1 below plots the two-way AADT volumes for SH1 Waipu (count station ID: 01N00309) from 2010. It is evident that the AADT was static between 2020 and 2014, grew between 2014 and 2018, levelled out in 2019 and dropped in 2020. The drop in traffic in 2020 corresponds to Covid restrictions on travel and tourism. Tourism and travel restrictions have been lifted in 2022 but tourism numbers are only now just increasing. STATS New Zealand data indicates that there were 266,700 border crossings in April 2022, well down on the 1.2 million border crossings in April 2019, before the COVID-19 pandemic ${ }^{1}$. For the purposes of this assessment, it is assumed that the AADT for 2022 will be similar to the 2019 AADT.

Figure 1 - Two-way AADT on SH1 Waipu
It is assumed that beyond 2022, traffic growth will continue along historic trends. Linear regression indicates that between 2010 and 2019, the AADT increase on average was 309 vpd per year, which represents 3% of the 2019 AADT.

Forecasts of future traffic growth should take into account future expectations of fuel prices and demographics. The "Transport Demand Forecasts Summary" report produced by NZIER for the Ministry of Transport (December 2013) has taken these factors into account to estimate that the net growth in light vehicle traffic in Northland will equate to less than 2% per annum.

Nevertheless, for the SIDRA analysis an AADT increase of 309 vpd per year has been used on SH1 (which represents 3% of the 2019 AADT).

[^0]The NZTA Planning Policy Manual indicates that for assessing development proposals, it is important to consider predicted traffic levels in the future - generally 10 years. For the purposes of this SIDRA assessment traffic growth of 309 vpd per year over 10 years (a 30% increase) has been applied to the estimated 2022 holiday peak hour traffic volumes to estimate the 2023 holiday peak hour traffic volumes.

1. 2032 Summer Holiday Peak Hour Traffic Volumes Without Development

The forecast 2032 holiday peak hour volumes on SH 1 at Waipu are determined by adding the forecast 30% traffic growth to the estimated 2022 holiday peak hour volumes. The results are shown in Table 1 below:

Table 1: Estimated 2032 Holiday Peak Hour Traffic Volume SH1 Waipu

Component	Southbound	Northbound	Total
2022 Holiday Peak Hour Traffic Volume	810	439	1249
Traffic Growth 2022 to 2031	243	132	375
TOTAL	1,053	571	1624
Percentage	65%	35%	100%

The roundabout access to the proposed service centre is to be located on SH1 in Waipu south of the Millbrook Road intersection.

The actual turning movements on SH 1 at the intersections with Millbrook Road and The Braigh were counted from noon to 1 pm on Wednesday $9^{\text {th }}$ February 2022. The surveyed turning movements are shown in Figure 2.

Figure 2 - Turning Movements at SH1 Waipu
12 noon to 1 pm, Wednesday $9^{\text {th }}$ February 2022.
The measured traffic volumes on SH 1 south of the site were $335 \mathrm{veh} / \mathrm{hr}$ southbound and 326 veh/hr northbound.

At $1,053 \mathrm{veh} / \mathrm{hr}$ southbound and $571 \mathrm{veh} / \mathrm{hr}$ northbound, the estimated 2032 summer holiday peak hour volumes on SH 1 are 3.14 and 1.75 times the actual southbound and northbound volumes measured in February 2022.

As Waipu is a holiday destination, it is expected that traffic volumes on The Braigh will inflate to a similar degree as on SH1 in summer peak holiday periods. However, as Millbrook Road primarily serves rural properties, it is not expected that volumes on Millbrook Road would inflate in holiday periods. On this basis, the expected 2032 holiday peak hour turning movements on SH1 at the intersections with Millbrook Road and The Braigh are shown in Figure 3.

Figure 3 - Forecast 2032 Holiday Peak Turning Movements at SH1 Waipu

Millbrook Road and The Braigh intersections
SIDRA-9 model results - 2032 holiday peak hour flows

MOVEMENT SUMMARY

Site: 101 [SH1/Millbrook Road - 2032 no dev (Site Folder: 2032 Holiday Peak Base + growth on The Braigh)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	K OF JE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: SH1 North													
25 T1	1075	12.9	1132	12.9	0.634	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.3
26 R2	16	12.9	17	12.9	0.021	10.9	LOS B	0.1	0.6	0.57	0.74	0.57	65.8
Approach	1091	12.9	1148	12.9	0.634	0.3	NA	0.1	0.6	0.01	0.01	0.01	98.5
NorthWest: Millbrook Road													
27 L2	9	12.9	9	12.9	0.293	31.9	LOS D	0.8	6.1	0.94	1.02	1.03	26.3
29 R2	4	12.9	4	12.9	0.293	243.4	LOS F	0.8	6.1	0.94	1.02	1.03	26.2
Approach	13	12.9	14	12.9	0.293	97.0	LOS F	0.8	6.1	0.94	1.02	1.03	26.3
SouthWest: SH1 south													
30 L2	2	12.9	2	12.9	0.333	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	82.0
31 T1	567	12.9	597	12.9	0.333	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.7
Approach	569	12.9	599	12.9	0.333	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.6
All Vehicles	1673	12.9	1761	12.9	0.634	1.0	NA	0.8	6.1	0.01	0.02	0.01	96.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 28 July 2022 10:48:31 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 No dev (Site Folder: 2032 Holiday Peak Base + growth on The Braigh)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	227	12.9	239	12.9	1.080	136.2	LOS F	21.1	163.8	1.00	2.86	6.95	17.2
23 R2	11	12.9	12	12.9	1.080	223.2	LOS F	21.1	163.8	1.00	2.86	6.95	17.1
Approach	238	12.9	251	12.9	1.080	140.2	LOS F	21.1	163.8	1.00	2.86	6.95	17.1
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.509	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	864	12.9	909	12.9	0.509	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	869	12.9	915	12.9	0.509	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.8
SouthWest: SH 1 south													
31 T1	487	12.9	513	12.9	0.287	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R2	89	12.9	94	12.9	0.218	13.5	LOS B	0.8	6.4	0.79	0.92	0.84	41.4
Approach	576	12.9	606	12.9	0.287	2.1	NA	0.8	6.4	0.12	0.14	0.13	81.9
All Vehicles	1683	12.9	1772	12.9	1.080	20.6	NA	21.1	163.8	0.18	0.45	1.03	56.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 28 July 2022 10:54:48 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 No dev - 2 lanes (Site Folder:

2032 Holiday Peak Base + growth on The Braigh)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		K OF JE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	227	12.9	239	12.9	0.803	36.6	LOS E	5.2	40.6	0.95	1.43	2.30	33.8
23 R2	11	12.9	12	12.9	0.277	103.6	LOS F	0.8	6.0	0.97	1.02	1.04	20.7
Approach	238	12.9	251	12.9	0.803	39.7	LOS E	5.2	40.6	0.95	1.41	2.24	32.8
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.509	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	864	12.9	909	12.9	0.509	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	869	12.9	915	12.9	0.509	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.8
SouthWest: SH 1 south													
31 T1	487	12.9	513	12.9	0.287	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R2	89	12.9	94	12.9	0.218	13.5	LOS B	0.8	6.4	0.79	0.92	0.84	41.6
Approach	576	12.9	606	12.9	0.287	2.1	NA	0.8	6.4	0.12	0.14	0.13	82.1
All Vehicles	1683	12.9	1772	12.9	0.803	6.4	NA	5.2	40.6	0.18	0.25	0.36	72.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 10:08:53 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

APPENDIX E

Proposed service centre layout

APPENDIX F

Typical tracking paths for a 23m HPMV truck and trailer

Trip generation and distribution predictions

Stand-Alone Peak Hour Traffic Generation of Waipu Gateway Activities

In undertaking a traffic assessment, it is common to apply published traffic generation rates to each of the separate activities on a site, and then add them to estimate the total traffic generation of the site. For another site, WK-NZTA have suggested using 85% percentile trip generation rates from NZTA Research Report 453 "Trips and Parking Related to Land Use". As this research report does not provide a trip generation rate for Automotive Servicing activities, the trip generation rate for this activity has been sourced from the US Institute of Transportation Engineers "Trip Generation" publication ($6^{\text {th }}$ Edition).

On this basis, the peak hour vehicle trip generation of the proposed Waipu Gateway service centre is shown in Table 2.

Table 2: Peak Hour Vehicle Trip Generation of Proposed Waipu Gateway Service Centre

Plan No.	Activity	GFA (m^{2})	NZRR453 $85^{\text {th }}$ percentile trip generation rate	predicted peak vehicle movements/hour
1-9	Service station/truck stop, including EV car and truck charging stations	19 bays	20.4	388
10-11	QSR + drive-through	260	52/100m ${ }^{2}$	135
12	Food outlet	148	$5.6 / 100 \mathrm{~m}^{2}$	8
13	Retail tenancies	408	$5.6 / 100 \mathrm{~m}^{2}$	23
14	Café*	113	0.5/seat	19
15	EV charging stations			
16-17	Supermarket	1000	18.9/100m ${ }^{2}$	189
18	Automotive assistance/services**	296	$7.7 / 100 \mathrm{~m}^{2}$	23
19-20	Food stores	429	$5.6 / 100 \mathrm{~m}^{2}$	24
21-22	QSR + drive-through	260	$52 / 100 \mathrm{~m}^{2}$	135
23	Food store	148	$5.6 / 100 \mathrm{~m}^{2}$	8
24	Retail tenancies	294	$5.6 / 100 \mathrm{~m}^{2}$	16
25-27	Farming/agricultural supplies	500	$5.6 / 100 \mathrm{~m}^{2}$	28
28	Rural/home supplies, warehousing	2507	$5.6 / 100 \mathrm{~m}^{2}$	140
29	Marine/vehicles sales/service	930	$5.6 / 100 \mathrm{~m}^{2}$	52
TOTAL				1188

[^1]
Accounting for Service Centre Pass-by Trips

Pass-by trips refer to motorists who turn into and out from the site when they were already passing the site.

Data on pass-by trip rates have been sourced from the ITE Trip Generation Handbook - $3^{\text {rd }}$ Edition, Austroads Guide to Traffic Management (AGTM) Part 12: Traffic Impact of Developments, and survey data on trip generation for fast food outlets undertaken for Roads and Maritime Services NSW by Bitzios Consulting. The results for relevant types of land-use are shown in Table 3 below:

Table 3: Published Pass-by Trip Rates

Activity	Pass-by Trips $(\%)$	Source
McDonalds	51%	Survey of 10 restaurants in NSW undertaken for Road and Maritime Services in NSW in 2016
Fast Food Outlets	35%	Undiverted drop-in: Table C8.1 of AGTM Part 12
Fast food restaurant with drive through	50%	ITE Trip Generation Handbook - 3rd Edition
Convenience Market with GAS	66%	ITE Trip Generation Handbook - 3rd Edition
Gas/service station with convenience market	56%	ITE Trip Generation Handbook - 3rd Edition
AVERAGE	52%	

These pass-by rates generally apply to urban sites, where trip distances are limited and it is not onerous to make a special (primary) trip to such activities. However, in the case of Waipu, there is a limited local population and trip distances will tend to be longer. It is thus more onerous to make a special trip to such activities. On this basis, a pass-by trip rate of 66% would appear reasonable to apply to the proposed Waipu Gateway service centre.

Accounting for Service Centre Linked Trips

Service centres comprise a number of complementary services - for example the proposed service centre will comprise a service station, fast food outlets, retail shops, cafés and an automotive service centre. In undertaking a traffic assessment, it is common to apply published traffic generation rates to each of the separate activities on a site, and then add them to estimate the total traffic generation of the site.

However, it would not be unusual for customers who are on the site to make use of more than one service, for example to have a meal or buy something while they are on the site to refuel their vehicle, and thus the total estimated traffic generation of the site should be reduced to account for this. There is, however, no published information that we could source on linked trips for service centres.

An indication of the effect of linked trips can be derived by looking at the difference between peak hour vehicle movements derived by adding the traffic generation predicted for each of the separate activities on a site with the actual measured peak hour vehicle movements.

Such a comparison was made for the BP Service Centre on SH1, Bombay. The traffic generation predicted for each of the separate activities on the site were estimated by applying the $85^{\text {th }}$ percentile trip generation rates suggested by NZTA Research Report 453 to the scale of activities at the BP Bombay Service Centre. The GFAs were estimated from Auckland Council Geo Maps aerial photography and Google Maps Street View. As no counts for café seating were available, the numbers of seats in cafés in the Bombay Service Centre were estimated by assuming 50% of the GFA of cafés would be set aside for diner seating, and that (based on RTA surveys) the mean eating gross floor area per seat is $1.5 \mathrm{~m}^{2}$.

On this basis, the peak hour vehicle trip generation of the proposed activities at the BP Bombay service centre using the 85% design generation rates from NZTA Research Report 453 are shown in Table 4.

Table 4: Peak Hour Trip Generation of Activities at BP Bombay Service Centre

Activity	Size	Peak Hour Vehicle Trip Rate (85\%)	Estimated Peak Hour Vehicle Trips
McDonalds	$600 \mathrm{~m}^{2} \mathrm{GFA}$	$52.2 \mathrm{veh} / \mathrm{hr}$ per $100 \mathrm{~m}^{2}$ GFA	313
Restaurants/cafés	384 seats	0.5 veh/hr per seat	192
Convenience Store	$250 \mathrm{~m}^{2} \mathrm{GFA}$	18.9 veh/hr per $100 \mathrm{~m}^{2} \mathrm{GFA}$	47
Service Station (fuelling)	16 fuel dispensers	20.4 per bay	326
TOTAL			878

By comparison, the actual turning movements counted at this service centre in August 2016 were as shown in Table 5.

Table 5: Surveyed Vehicle Turning Movements at BP Bombay Service Centre

Peak Hour	Turning Movements
Weekday AM Peak Hour	456
Weekday PM Peak Hour	414
Saturday MD Peak Hour	632

By comparing the difference between the peak hour vehicle movements derived by adding the traffic generation predicted for each of the separate activities on a site with the actual measured peak hour vehicle movements, it appears that the proportion of linked trips was 48% in the AM peak hour, 53% in the PM peak hour and 28% in the midday Saturday peak hour.

For the purposes of this assessment, it is conservatively assumed that 50% of trips to the proposed service centre will be linked trips.

Pass-by Trip Turning Movements

Accounting for linked trips, the predicted holiday peak hour trip generation of the service centre is 487 vehicle movements per hour. As indicated above, 66% of vehicle movements are expected to be associated with pass-by trips, meaning pass-by trips in the holiday peak hour are expected to generate 321 vehicle movements per hour. It is assumed that the direction of pass-by trips will be in proportion to the holiday peak hour traffic volume by direction, i.e., 65% southbound and 35% northbound. Thus 208 vehicle movements per hour will be associated with southbound pass-by trips and 113 vehicle movements per hour will be associated with northbound pass-by trips. Finally, it is assumed that the pass-by vehicle movements will be equally split between vehicles entering the service centre and vehicles leaving the service centre. On this basis, the expected holiday peak hour pass-by vehicle movements associated with the proposed service centre are shown in Table 6.

Table 6: Predicted Holiday Peak Hour Pass-By Vehicle Movements

Direction	Northbound	Southbound
In	56	104
Out	56	104
TOTAL	112	208

These trips are not additional traffic, and so the volume of through traffic on SH 1 needs to be reduced by the corresponding amount, i.e., 56 vehicles per hour northbound and 104 vehicles per hour southbound.

Primary Trip Vehicle Movements

Primary trips are special trips made solely for the purpose of visiting the service centre. It is predicted that 34% of the total vehicle movements associated with the service centre will be associated with primary trips, i.e., 166 vehicle movements in the holiday peak hour.

It is assumed that primary trips will originate equally between origins to the north of Waipu, origins to the south of Waipu, and origins within Waipu, i.e., 55 vehicle movements associated with each of these origins. It is once again expected that primary vehicle movements will be equally split between vehicles entering and leaving the service centre.

Customers from areas to the south will approach the site northbound on SH1 and leave the site southbound on SH1, customers from areas to the north will approach the site southbound on SH 1 and leave the site northbound on SH 1 , and customers from Waipu will access the site via The Braigh and return the same way.

On this basis, the expected holiday peak hour primary vehicle movements generated by the proposed service centre are shown in Figure 1.

Figure 1 - Holiday Peak Hour Service Centre Primary Turning Movements
These turning movements are additional traffic movements and need to be added to the 2032 holiday peak hour turning movement volumes.

ESTIMATED 2032 HOLIDAY PEAK HOUR TURNING MOVEMENTS (EXCL DEVELOPMENT TRAFFIC)

ESTIMATED 2032 HOLIDAY PEAK HOUR TURNING MOVEMENTS INCLUDING DEVELOPMENT TRAFFIC

BP Waipu
COUNTED TURNING MOVEMENTS 12NOON TO 1PM, WED 9TH FEB 2022

ESTIMATED 2032 HOLIDAY PEAK HOUR TURNING MOVEMENTS (EXCL DEVELOPMENT TRAFFIC)

	NBD	SBD	TOTAL
WAIPU GATEWAY RAW PEAK HOUR TRIP GEN			1213
PERCENT LINKED TRIPS			50\%
WAIPU GATEWAY HOLIDAY PEAK HOUR TRIP GEN			607
PERCENT PASS-BY TRIPS			50\%
TOTAL PASS-BY VEH MOVEMENTS			303
PERCENT PASS-BY BY DIRECTION	35\%	65\%	
PASS-BY MOVEMENTS BY DIRECTION	107	197	
\% N	50\%	50\%	
PASS-BY IN MOVEMENTS BY DIRECTION	53	98	
PASS-BY OUT MOVEMENTS BY DIRECTION	53	98	
PERCENT PRIMARY TRIPS			50\%
total primary veh movements			303
SPLIT BETWEEN SH1 NBD, SH1 SBD AND WAIPU			33\%
NUMBER OF PRIMARY MOVEMENTS PER ORIGIN			101
\% N			50\%
PRIMARY IN MOVEMENTS PER ORIGIN			51
PRIMARY OUT MOVEMENTS PER ORIGIN			

ESTIMATED 2032 HOLIDAY PEAK HOUR TURNING MOVEMENTS INCLUDING DEVELOPMENT TRAFFIC

APPENDIX H

SIDRA-9 model results - 2032 holiday peak with Service Centre - Service Centre roundabout

- Millbrook Road/The Braigh intersections

MOVEMENT SUMMARY

∇ Site: 101 [Service Centre roundabout (Site Folder: Option DDH - roundabout 1213 gen)]

New Site
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: SH1 north													
25 T1	949	12.9	999	12.9	0.902	12.9	LOS B	22.0	170.7	1.00	0.73	1.16	67.1
26 R2	199	12.9	209	12.9	0.902	20.4	LOS C	22.0	170.7	1.00	0.73	1.16	53.2
Approach	1148	12.9	1208	12.9	0.902	14.2	LOS B	22.0	170.7	1.00	0.73	1.16	64.2
NorthWest: site access													
27 L2	139	12.9	146	12.9	0.354	3.6	LOS A	2.5	19.7	0.75	0.72	0.75	47.2
29 R2	164	12.9	173	12.9	0.354	8.1	LOS A	2.5	19.7	0.75	0.72	0.75	48.3
Approach	303	12.9	319	12.9	0.354	6.0	LOS A	2.5	19.7	0.75	0.72	0.75	47.8
SouthWest: SH1 south													
30 L2	105	12.9	111	12.9	0.509	8.1	LOS A	4.6	35.8	0.63	0.61	0.63	51.2
31 T1	499	12.9	525	12.9	0.509	8.5	LOS A	4.6	35.8	0.63	0.61	0.63	71.8
Approach	604	12.9	636	12.9	0.509	8.4	LOS A	4.6	35.8	0.63	0.61	0.63	67.1
All Vehicles	2055	12.9	2163	12.9	0.902	11.3	LOS B	22.0	170.7	0.85	0.70	0.94	61.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 9:21:14 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/Millbrook Road - 2032 with dev (Site Folder: Option DDH - roundabout 1213 gen)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: SH1 North													
25 T1	1143	12.9	1203	12.9	0.674	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	99.1
26 R2	16	12.9	17	12.9	0.024	11.6	LOS B	0.1	0.7	0.60	0.77	0.60	65.0
Approach	1159	12.9	1220	12.9	0.674	0.3	NA	0.1	0.7	0.01	0.01	0.01	98.4
NorthWest: Millbrook Road													
27 L2	9	12.9	9	12.9	0.522	113.8	LOS F	1.4	11.1	0.97	1.04	1.18	13.5
29 R2	4	12.9	4	12.9	0.522	489.2	LOS F	1.4	11.1	0.97	1.04	1.18	13.4
Approach	13	12.9	14	12.9	0.522	229.3	LOS F	1.4	11.1	0.97	1.04	1.18	13.5
SouthWest: SH1 south													
30 L2	2	12.9	2	12.9	0.373	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	82.0
31 T1	636	12.9	669	12.9	0.373	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.7
Approach	638	12.9	672	12.9	0.373	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.6
All Vehicles	1810	12.9	1905	12.9	0.674	1.9	NA	1.4	11.1	0.01	0.02	0.01	94.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 9:23:13 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 with dev (Site Folder: Option

 DDH - roundabout 1213 gen)]New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$	DEM FLO [Total veh/h	$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	261	12.9	275	12.9	1.404	400.5	LOS F	58.2	452.5	1.00	5.05	14.19	7.6
23 R2	11	12.9	12	12.9	1.404	490.7	LOS F	58.2	452.5	1.00	5.05	14.19	7.6
Approach	272	12.9	286	12.9	1.404	404.1	LOS F	58.2	452.5	1.00	5.05	14.19	7.6
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.529	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	899	12.9	946	12.9	0.529	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	904	12.9	952	12.9	0.529	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.7
SouthWest: SH 1 south													
31 T1	521	12.9	548	12.9	0.307	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R2	124	12.9	131	12.9	0.333	15.9	LOS C	1.4	10.7	0.83	0.99	1.02	40.3
Approach	645	12.9	679	12.9	0.333	3.1	NA	1.4	10.7	0.16	0.19	0.20	77.7
All Vehicles	1821	12.9	1917	12.9	1.404	61.5	NA	58.2	452.5	0.21	0.82	2.19	34.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 9:25:01 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 with dev - 2-lanes (Site

 Folder: Option DDH - roundabout 1213 gen)]New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{gathered} \hline \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% QU [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	261	12.9	275	12.9	1.023	96.9	LOS F	16.2	126.1	1.00	2.46	5.74	21.7
23 R2	11	12.9	12	12.9	0.380	152.8	LOS F	1.1	8.2	0.98	1.03	1.08	16.2
Approach	272	12.9	286	12.9	1.023	99.2	LOS F	16.2	126.1	1.00	2.41	5.55	21.4
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.529	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	899	12.9	946	12.9	0.529	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	904	12.9	952	12.9	0.529	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.7
SouthWest: SH1 south													
31 T1	521	12.9	548	12.9	0.307	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R 2	124	12.9	131	12.9	0.333	15.9	LOS C	1.4	10.7	0.83	0.98	1.02	40.5
Approach	645	12.9	679	12.9	0.333	3.1	NA	1.4	10.7	0.16	0.19	0.20	77.9
All Vehicles	1821	12.9	1917	12.9	1.023	16.0	NA	16.2	126.1	0.21	0.43	0.90	60.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 9:30:53 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

APPENDIX I

Sensitivity test for pass-by traffic percentage
SIDRA-9 model results - 2032 holiday peak with service centre

- Service Centre roundabout
- Millbrook Road/The Braigh intersections

MOVEMENT SUMMARY

\forall Site: 101 [Service Centre roundabout (Site Folder: Option DDH - roundabout 1213 gen - 50\% pb)]

New Site
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: SH1 north													
25 T1	980	12.9	1032	12.9	0.910	12.4	LOS B	23.0	178.5	1.00	0.70	1.13	67.2
26 R2	199	12.9	209	12.9	0.910	19.9	LOS B	23.0	178.5	1.00	0.70	1.13	53.3
Approach	1179	12.9	1241	12.9	0.910	13.7	LOS B	23.0	178.5	1.00	0.70	1.13	64.3
NorthWest: site access													
27 L2	154	12.9	162	12.9	0.361	3.8	LOS A	2.6	20.3	0.77	0.73	0.77	47.3
29 R2	149	12.9	157	12.9	0.361	8.3	LOS A	2.6	20.3	0.77	0.73	0.77	48.4
Approach	303	12.9	319	12.9	0.361	6.0	LOS A	2.6	20.3	0.77	0.73	0.77	47.8
SouthWest: SH1 south													
30 L2	104	12.9	109	12.9	0.523	8.2	LOS A	4.8	37.3	0.64	0.61	0.64	51.1
31 T1	516	12.9	543	12.9	0.523	8.5	LOS A	4.8	37.3	0.64	0.61	0.64	71.7
Approach	620	12.9	653	12.9	0.523	8.5	LOS A	4.8	37.3	0.64	0.61	0.64	67.2
All Vehicles	2102	12.9	2213	12.9	0.910	11.0	LOS B	23.0	178.5	0.86	0.68	0.93	62.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 10:19:28 AM
Project: \IMac\HomelDocuments\SIDRA121803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/Millbrook Road - 2032 with dev (Site Folder: Option DDH - roundabout 1213 gen - 50\% pb)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		K OF E Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: SH1 North													
25 T1	1176	12.9	1238	12.9	0.694	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	99.1
26 R2	16	12.9	17	12.9	0.025	12.0	LOS B	0.1	0.7	0.61	0.78	0.61	64.5
Approach	1192	12.9	1255	12.9	0.694	0.3	NA	0.1	0.7	0.01	0.01	0.01	98.3
NorthWest: Millbrook Road													
27 L2	9	12.9	9	12.9	0.704	226.1	LOS F	2.0	15.7	0.98	1.06	1.31	8.6
29 R2	4	12.9	4	12.9	0.704	730.0	LOS F	2.0	15.7	0.98	1.06	1.31	8.6
Approach	13	12.9	14	12.9	0.704	381.1	LOS F	2.0	15.7	0.98	1.06	1.31	8.6
SouthWest: SH 1 south													
30 L2	2	12.9	2	12.9	0.392	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	82.0
31 T1	668	12.9	703	12.9	0.392	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.7
Approach	670	12.9	705	12.9	0.392	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.6
All Vehicles	1875	12.9	1974	12.9	0.704	2.9	NA	2.0	15.7	0.01	0.01	0.01	92.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 10:20:42 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 with dev (Site Folder: Option DDH - roundabout 1213 gen - 50\% pb)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	277	12.9	292	12.9	1.583	558.0	LOS F	76.5	594.9	1.00	5.80	16.76	5.7
23 R2	11	12.9	12	12.9	1.583	650.1	LOS F	76.5	594.9	1.00	5.80	16.76	5.7
Approach	288	12.9	303	12.9	1.583	561.5	LOS F	76.5	594.9	1.00	5.80	16.76	5.7
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.538	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	915	12.9	963	12.9	0.538	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	920	12.9	968	12.9	0.538	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.7
SouthWest: SH1 south													
31 T1	537	12.9	565	12.9	0.316	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R 2	140	12.9	147	12.9	0.392	17.2	LOS C	1.7	13.1	0.85	1.02	1.11	39.7
Approach	677	12.9	713	12.9	0.392	3.6	NA	1.7	13.1	0.18	0.21	0.23	76.0
All Vehicles	1885	12.9	1984	12.9	1.583	87.2	NA	76.5	594.9	0.22	0.96	2.64	27.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 10:21:57 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

MOVEMENT SUMMARY

Site: 101 [SH1/The Braigh - 2032 with dev - 2-lanes - Copy (Site Folder: Option DDH - roundabout 1213 gen - 50\% pb)]
New Site
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$	$\begin{array}{r} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \hline \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% QU [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: The Braigh													
21 L2	277	12.9	292	12.9	1.141	177.5	LOS F	30.8	239.6	1.00	3.48	9.08	14.6
23 R2	11	12.9	12	12.9	0.442	187.3	LOS F	1.2	9.5	0.99	1.03	1.11	14.0
Approach	288	12.9	303	12.9	1.141	177.9	LOS F	30.8	239.6	1.00	3.38	8.78	14.5
NorthEast: SH1 north													
24 L2	5	12.9	5	12.9	0.538	8.2	LOS A	0.0	0.0	0.00	0.00	0.00	81.6
25 T1	915	12.9	963	12.9	0.538	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	98.9
Approach	920	12.9	968	12.9	0.538	0.1	NA	0.0	0.0	0.00	0.00	0.00	98.7
SouthWest: SH1 south													
31 T1	537	12.9	565	12.9	0.316	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
32 R 2	140	12.9	147	12.9	0.392	17.2	LOS C	1.7	13.1	0.85	1.01	1.11	39.9
Approach	677	12.9	713	12.9	0.392	3.6	NA	1.7	13.1	0.18	0.21	0.23	76.1
All Vehicles	1885	12.9	1984	12.9	1.141	28.5	NA	30.8	239.6	0.22	0.59	1.42	49.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIC PLANNING CONSULTANTS LTD | Licence: PLUS / 1PC | Processed: 14 November 2022 10:23:12 AM
Project:
Mac\Home\Documents\SIDRAl21803 - BP Waipu Bypass Service Centre v5.sip9

[^0]: ${ }^{1}$ https://www.stats.govt.nz/news/border-crossings-highest-in-two-years/

[^1]: * Based on 50% of GFA for eating floor space and $1.5 \mathrm{~m}^{2}$ eating floor space per seat (RTA NSW) $=3 \mathrm{~m}^{2}$ GFA/seat
 ** ITE Trip Generation $6^{\text {th }}$ Edition Land Use 840: Automotive Care Centre

