

Planning | Surveying | Engineering | Environmental

EARTHWORKS AND CIVIL WORKS INFRASTRUCTURE REPORT

Client: Vaco Investments Ltd.

Project Site: 47 Millbrook Road, Waipu

APPLICATION PRÉCIS

CLIENT	Vaco Investments Ltd
SITE LOCATION	47 Millbrook Road, Waipu
LEGAL DESCRIPTION	PT Lot 1, DP 44163
TERRITORIAL AUTHORITY	Whangarei District Council

DOCUMENT CONTROL

CKL REFERENCE	A21235
DOCUMENT STATUS	Approved
REVISION NO.	2
DATE	8/09/23
FILE NAME	A21235-ED-ENGDATA_EARTHWORKS MEMO.docx
AUTHOR	Frances Deamer-Phillips Engineer
AUTHORISED BY	Sam Jackman
OFFICE OF ORIGIN	Auckland

TABLE OF CONTENTS

1.0	Introduction
2.0	Background4
2.1	Existing Site4
2.2	Proposed Development5
3.0	Earthworks5
3.1	Earthworks5
4.0	Roading6
4.1	Existing roads6
4.2	Proposed SH1 upgrade7
5.0	Stormwater
5.1	Existing site9
5.2	Proposed Development
5.3	Stormwater Objectives
5.4	Stormwater Optioneering11
5.5	Best Practicable Option for Stormwater Management/Recommendations
Ir	dicative Attenuation Sizing13
	dicative Attenuation Sizing
Ρ	rimary and Secondary Conveyance14
P 6.0	rimary and Secondary Conveyance
P 6.0 6.1	rimary and Secondary Conveyance
P 6.0 6.1 6.2	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0 7.1 7.2	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0 7.1 7.2	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0 7.1 7.2 P	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0 7.1 7.2 P 7.3	rimary and Secondary Conveyance
P 6.0 6.1 6.2 6.3 7.0 7.1 7.2 P 7.3 7.4	rimary and Secondary Conveyance

Appendix A – Drawings

Appendix B – Geotech Report

1.0 Introduction

The purpose of this memo is to demonstrate high level assessment for the provision of earthworks for a proposed development at 47 Millbrook Road, Waipu to support lwi consultation.

The assessment is completed with information from the following sources:

- Whangarei District Council GIS Maps (accessed 23/11/2021)
- Whangarei District Council Environmental Engineering Standards, Issue 0.4, June 2022.
- Technitrades Architecture's Drawing (Scheme H)
- Preliminary Grotechnical Investigation by Soil and Rock (June 2022)

The scope of this memo details the following:

• Earthworks

Erosion and sediment control details will be provided in due course for consent applications.

Refer to appendix A for plans.

2.0 Background

2.1 Existing Site

The site was formerly used for general grazing, prior landuse is unknown and comprises an area of approximately 5.9 hectares located at 47 Millbrook Road, Waipu (refer Figure 1 -Site Location Plan). In general, the site is flat.

Figure 1 – SITE LOCATION PLAN

As seen in the geotechnical report as part of appendix B, it is reported that the geological maps of the area indicates that the site is underlain by Late Pleistocene River Deposits of the Tauranga group. These materials generally comprise poorly consolidated mud, sand, gravel, and peat deposits of alluvial, swamp and estuarine origins with high water table.

2.2 Proposed Development

Future subdivision and development of the site will comprise of light industrial buildings and commercial buildings which will provide a range of activities that are compatible with the travelling public and wider Waipu community, based on concept plans made available to CKL at the time of writing.

This memo outlines works to be covered under the bulk earthworks consent, which include the following:

- Bulk earthworks to re-grade the site for future development
- Erosion and sediment controls
- Site stabilisation upon completion of bulk earthworks

Refer to appendix A for plans

3.0 Earthworks

3.1 Earthworks

The proposed bulk earthworks comprise a cut to fill operation over an area of approximately 5.9 hectares. The total estimated earthworks volumes associated with the works are presented in Table 1 below.

Earthworks	Volume (m ³)			
Cut volume – bulk earthworks	3,700			
Fill volume – bulk earthworks	21,100			
Balance	17,100			

Table 1 : ESTIMATED EARTHWORKS VOLUMES

All estimated earthworks volumes are solid measure quantities and do not allow for compaction or bulking factors nor topsoil / subgrade depths.

As mentioned above, clay fill import and disposal of organic/unsuitable material offsite may be required to achieve design levels. Any fill material imported to site will first be confirmed as suitable for use by the Geotechnical Engineer and clean fill/contamination-free status verified. Imported fill may be specific to allow effluent field designs to be confirmed at future detailed design stage.

Refer to appendix A for plans

As seen the geotechnical report in appendix B, where earthworks are required, the following procedures should be observed:

- Settlement risks associated with filling above settlement-prone soils should be considered in the earthworks design. Typical methods for mitigating settlement effects include preloading using temporary stockpiled fill.
- The contractors construction methodology should allow for excavation below the water table for any excavations.
- Prior to commencing earthworks, a sediment control system must be constructed to ensure the Territorial and Regional Authority requirements are met.
- Unsuitable materials (topsoil, unsuitable soils) encountered should be excavated, removed and replaced with good quality granular fill compacted in layers no greater than 150mm (loose, prior to compaction).
- Any springs or seepage of water observed at ground level or intercepted by stripping operations should be captured in a suitable sealed pipe and taken via the shortest route to a safe discharge point as per the Geotechnical Engineer's advice.
- Service trenches should be backfilled with engineered granular fill where this is deemed necessary e.g. under pavements and other permanent structures.
- All fills, regardless of depth, must be placed in accordance with NZS 4431:1989 with respect to subgrade preparation and standard of compaction.
- A Geotechnical Engineer should inspect the prepared subgrade prior to placement of fill and test the fill compaction during placement.

4.0 Roading

4.1 Existing roads

The existing roads adjacent to the proposed development are State Highway 1 (01N-0303) to the southeast and Millbrook Road to the northeast.

The site is located west of Waipu and is zoned rural production zone under the Whangarei district plan.

The general locality of the site is shown in Figure 2 below. This shows the site location in relation to SH1 and the town of Waipu.

According to the Waka Kotahi One Network Road Classification the estimated traffic (AADT) for SH1 adjacent to the development site is 7815/day with 115 (1.5%) estimated as heavy vehicles.

Conversely, Millbrook Road is estimated to have a traffic volume of 180/day and 7.8% heavy vehicles

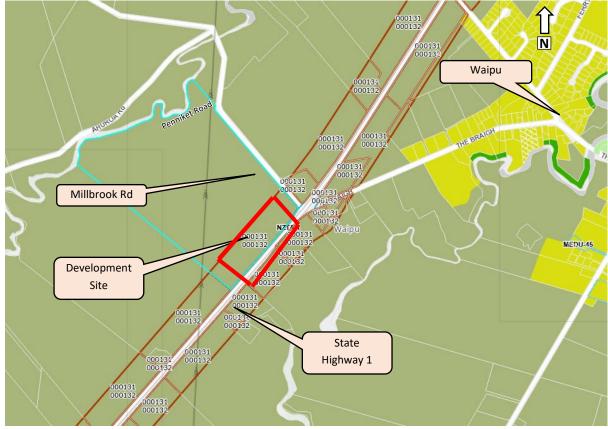


Figure 2: WDC Land use Zone

4.2 Proposed SH1 upgrade

Consultation with NZTA and TDC has been undertaken for preliminary concept designs of the proposed roundabout and highway upgrade. however, the road layout is preliminary and further refinements following additional consultation with NZTA and TDC will be implemented. Final layout including details on road cross section, tracking, longitudinal grades etc will be provided in due course following further consultation.

The road will likely be designed to an industrial road standard. The pavement design methodology will be agreed and provided in due course at detailed design stages.

The concept design for the public road has been based on a 3.5m wide sealed lanes with one lane southbound and one land northbound that transitions to a dual carriageway 7m wide.

A roundabout is conceptually proposed as the access to the development site and land is proposed to be vested to NZTA to accommodate public road to the tangent points of the northern leg entering the development site. The roundabout is proposed to operate as a single lane roundabout. The transportation related effects of the proposed development will be assessed in due course, including but not limited to:

- The transport environment surrounding the subject site;
- An investigation into the proposed road from SH1 to Millbrook Rd and sight distance requirements;
- An estimation of the expected trip generation of the proposed development and addressing any potential impacts that these trips could cause on the adjoining road network; and
- Identifying the necessary mitigation measures to satisfactorily address these effects, if required.

It is standard practice that a Construction Traffic Management Plan (CTMP) is developed to outline how deliveries to and from the site will be managed and mitigated. The CTMP should include the following:

- Construction dates and hours of operation including any specific non-working hours for traffic congestion, noise, etc;
- Diagrams identifying which routes trucks will use to travel to and from the site;
- Temporary traffic management signage / details to appropriately manage vehicles and pedestrians in the vicinity of the site; and
- Details of site access / egress over the entire construction period noting that all access points to be located so that appropriate visibility is achieved onto the adjacent road network.

Based on experience with the construction planning and traffic management associated with earthworks projects of a similar magnitude, it is considered that construction activities can be managed to ensure an appropriately low level of construction traffic effects. Of note, the construction activities are temporary and with appropriate measures in place as identified above, will be able to be managed.

Construction effects are therefore considered to be less than minor and can be managed through the CTMP.

5.0 Stormwater

5.1 Existing site

Details of the existing site conditions are provided below.

Site address	47 Millbrook Road, Waipu, Whangarei District					
Legal Description	PT Lot 1, DP 44163, NA 26A / 257 Area 317884 m2					
Current & Historical land use	The land is currently used for general grazing and it is not known what the prior landuse was.					
Topography	Generally flat with an mRL of 10m across the site.					
Geotechnical	Tauranga Group (alluvial deposit with silt and clay), low infiltration, high groundwater					
Existing drainage	The site is bound by SH1 to the south-east and Millbrook Rd to the north-					
features	east, and farmland on the remaining boundaries.					
	There is a culvert is located under Millbrook Road and under SH1 near southeast corner of site.					
Receiving environment	The direct receiving environment is the roadside drain adjacent to SH1 which drains south and roadside drain to the north that drains to the north along SH1.					
	The Waihoihoi River is located circa 370m (as the crow flies) from the site, which then flows into the Waipu River prior to discharging into the sea.					
	Site Waipu River					
Manhole and Discharge under SH1	Walpu Kivel					
	Waihoihoi River					

5.2 Proposed Development

The proposed development converts grassed land into largely impervious area of buildings and associated carparks.

5.3 Stormwater Objectives

The stormwater objectives are summarised below, based on the Whangarei District Council Environmental Engineering Standards (June 2022), in the absence of any catchment management plan specific to the area:

With respect to <u>conveyance</u>, a minimum 150mm connection is required for each commercial/industrial lot and be designed for a minimum 1 in 2-year ARI and 1 in 50year ARI with no surcharge.

With respect to <u>flooding related issues</u>, freeboard of 0.3m above the 1 in 100 ARI storm is required for commercial and industrial buildings, unless specific assessment demonstrates that a different freeboard is appropriate.

Overland flow paths and flood protection must be designed for 1 in 100 ARI storm event with a climate change allowance of an additional 20% to rainfall data¹. National climate change factors have been recently and adopted by local government. Confirmation of the appropriate climate change allowance needs to be sought from WDC.

With respect to <u>stormwater quality control</u>, the development must comply with the NRC Regional Water and Soil Plan, in particular rules for stormwater discharges and diversion from roads and from land disturbance activities. Therefore, the activity will be permitted provided that:

- a) The stormwater is diverted or discharged in the catchment from which it originates.
- b) Water and sediment control measures (e.g. rock rip-rap, cut-off drains, sediment traps) are installed and maintained, to avoid or minimise erosion and to avoid or minimise sediment discharges to any adjacent water bodies or to any coastal waters.
- c) The diversion and discharge has a no more than minor adverse effect (as determined by the relevant water quality guidelines in Section 7) on aquatic ecosystems and/or on neighbouring or downstream landowners/occupiers (e.g. deposition of sediment, exacerbation of flooding).

With respect to <u>attenuation</u>, the peak flow discharge shall be limited to 80% of the predevelopment levels for both primary and secondary flows.

With respect to disposal, an options assessment below considers the available options.

¹ This is subject to change due to national requirements. Confirmation is required from WDC, as to the adoption of national requirements.

5.4 Stormwater Optioneering

The stormwater option assessment was considered in CKL's 3 Water options assessment memo. Below Table 2 summarizes the options and the best practicable option.

Option	Pros	Limitation	Recommendation
Soakage	Soakage stormwater runoff to ground water is considered the preferable option for mitigation effects on the environment, however, requires a high infiltration rate of native soil	The geotechnical report by Soil and Rock indicates the site's underlying soil is stiff silt and clay with low infiltration rates and high ground water level. This makes soakage infeasible.	Not feasible
Discharge to public network	Often requires less storage onsite if network is sized appropriately and no flooding downstream	There is no network nearby, so this is not considered feasible	Not feasible
Discharge to land	Existing situation sheet flows to roadside channels on SH1 and Millbrook Rd. This option will mimic existing situation and no require new public infrastructure	To not increase flooding in SH1, Millbrook Rd or neighbouring properties, large attenuation ponds are required here	Considered best practical option
Re-use	Stormwater re-use is encouraged as a means of attenuating the increased flow associated with a new development. The water demand for the proposed development is limited, but could provide some flow balancing.	Given the high-water use required for the site, large tanks across the site would be required for water supply. It has been recommended to extend a water main to site, therefore this is less practical	Can be used in conjunction with discharging to land

Table 2: Stormwater Options Assessment

5.5 Best Practicable Option for Stormwater Management/Recommendations

Based on the optioneering above, the best practicable option for stormwater disposal is considered to be discharge to land.

Stormwater parameter	Objective	Optioneering	Staging implications
Discharge	Stormwater disposal to land	See Section Error! Reference source not found.	-
Conveyance	Minimum 1 in 2-year ARI with no surcharge and 1 in 5 year allowing discharge within 0.3m of the lid level	Shallow swale – benefit of combining treatment with conveyance	Swale relies on the ground levels
Flood related issues	Freeboard of 0.3m above 100-year ARI + climate change	Raise buildings platforms above floodplain (if exists). Fill site to remove any flooding inundation from lots	-
Stormwater quality control	See list above in Section 5.3.	Treatment swale – preferred option due to shallow grade. Proprietary treatment device (Upflo system) for limited head available.	A treatment train approach can be effective way to have desired water quality results. Therefore, on-lot treatment can minimise the size of the centralised treatment device (swale/proprietary unit). On lot treatment can be developed per stage.
Attenuation	Peak flow discharge shall be limited to 80% of the predevelopment levels for both primary (5yr) and secondary (100yr) flows.	Primary and Secondary event can be attenuated within proposed attenuation basins.	Two large attenuation ponds are proposed on the northern and southern side of site. Therefore stage 1 can utilize the southern basin and the northern one

The table below includes high level for the development of a stormwater strategy.

	can be brought online in
	stage 2 of development.

The best practicable option for stormwater management is depicted in a chart below.

Indicative Attenuation Sizing

Sizing for the attenuation requirements is provided in the section below.

The total development area is 5.92ha with 62% imperviousness, based on site plan (Technitrades Architecture's Drawing (Scheme H).

Coverage	Pre-development (ha)		Post-development (ha)	
Roof/varandas/canopies	0.000	0%	0.760	13%
Impervious	0.000	0%	2.905	49%
Grass/pervious	5.913	100%	2.248	38%
TOTAL AREA	5.913	100%	5.92	100%

Rainfall depths were derived from HIRDS and increased by 20% for climate change, in accordance with WDC's Environmental Engineering Guidelines is shown below.

	ARI	HIRDS Rainfall Depth (mm)	Climate change Factor	Rainfall Depth +CC (mm)	
Primary	5YR	125.0	20.00%	150.0	
Secondary	100yr	228.0	20.00%	273.6	

The existing site drains to two existing culverts on site, therefore the proposed earthworks design creates two separate catchments to mimic existing catchment. To achieve attenuation of the primary and secondary rainfall event, the volume required is 700m³ and 1250m³ for the two proposed attenuation basins. The southern one (Pond 2) will accommodate the BP, entrance to site and building 11 and 13 and parking associated with these buildings which is considered to be stage 1 of development.

The ponds have been sized to be 0.6m deep pond with 0.2m of freeboard. Scurffy dome outlets with orifice are sized to attenuate flow. The pond surface area of 1310m² for Pond 2 southern portion of site and 1415m² for Pond 1 and northern portion of site.

See CKL drawing #4000 for locations and sizing for attenuation ponds.

Primary and Secondary Conveyance

Given the site is so flat and high groundwater is found, a stormwater reticulation system underground would drive the level of the ponds too low and enter groundwater influence area, making them impractical to build. Therefore, swales are provided for treatment and primary conveyance. Onsite stormwater swale and OLFPs are sized in Appendix B.

The upstream overland flow paths will be directed around the site in conveyance swales prior to discharging to existing culvert, as in exiting scenario. Calculations for upstream OLFP diversion are provided in Appendix B.

6.0 Wastewater

6.1 Wastewater Demand

Wastewater flow and strength will be dependent on types of industry/commercial users on site, which has not been determined yet for each proposed building. Therefore, the initial sizing for wastewater demand was based on Watercare's The Auckland Water and Wastewater Code of Practice for Land Development and Subdivision. The estimated commercial design flows in the Code of practice were used along with the proposed building footprint. Assumptions were made on weather a building would be dry retail or wet retail based on assumed occupants of each building. Stage 1 will include the BP, Burger King and another food stop so are all considered 'wet retail' as they will provide toilets to customers. Stage 2 occupants is unknown, however, buildings area designed for either food (wet retail) or retail shops (dry retail) in mind. This methos was used to get an estimate of wastewater flow allowances. The determined total wastewater allowance for site was 25.887kl/day. See Appendix B for wastewater demand calculations.

It is not envisaged that any medical or pharmaceutical enterprises are proposed for this development.

6.2 Treatment

It is proposed to have a centralized, modular treatment plant which can be adapted for flow and strength of wastewater, pending the type of commercial activity on site and can be trimmed based on occupancy in order to achieve the desired effluent quality. The modular system can also be added to in stages as different part of the site are developed. Innoflow have provided preliminary design for the treatment plant and the following are proposed to be included for treatment for wastewater (Innoflow Treatment Plan included in Appendix B).

Demand

- Stage 1- 10,700 L/day
- Stage 2- 12,000 L/day

Influent to treatment plant

- cBOD5: <600 mg/L
- TSS: <800 mg/L
- TKN: <120 mg/L

Treatment Process

The proposed treatment process comprises mostly below-ground tanks housing septic tanks, media and pumps. The process comprises;

- Pre-treatment grease traps
- Primary treatment septic tanks
- Secondary treatment anoxic packed bed reactors and recirculation.

Effluent from treatment plant

- The process can be adapted to accommodate nutrient removal requirements but typically achieves following effluent values:
- cBOD5: 20 mg/L
- TSS: 30 mg/L

The required effluent quality for Northland Regional Council standards (as confirm by Katie Mcguire on 7/6/23) is below. The above treatment design threats to a higher level than required.

Required NRC Effluent

- cBOD5: 30 mg/L
- TSS: 45 mg/L

6.3 Onsite Disposal

The preferred option for disposal of treated effluent from the centralized plant is by pressure compensating drip irrigation to adjacent land within the site. The geotechnical assessment has indicated that the soil permeability is relatively low and that the ground water levels fluctuate across the site, therefore disposal to land must be designed carefully to reduce risk to the receiving environment.

TP58 was used to size the disposal field assuming the native soil is based on Category 5 soils. TP58 indicated that a design loading rate of 5mm/day can be used where the depth of topsoil is 250mm or greater. Given the high ground water found onsite, the wastewater fields will be in imported fill to create at least 600mm separation from existing ground (assumed high ground water level is at surface of existing ground). The imported fill can be a mix of sand and topsoil to promote plant uptake of nitrogen and phosphorus and provided increase treatment rates of the effluent from drip irrigation. Additionally, the effluent quality from the treatment plant is treated to higher standard than required. Therefore, the design loading rate of 5mm/day was used.

Testing of site-specific loading rates will be carried out at detailed design in location of proposed wastewater fields to confirm the loading rate.

The estimated area of the disposal is given above assumption is approximately 5,177m².

As confirmed by NRC, there is a contingency factor 30% reserve disposal area is required. This bring the total area of design and reserve wastewater field required to **6,731 m²**.

It is recommended that approximately 600mm separation between ground water and drip irrigation is applied to ensure groundwater is not contaminated. Pending confirmation of permeability and groundwater, this will constitute a large volume of suitably permeable fill material to ensure proposer separation to groundwater.

The proposed drip irrigation lines are as follows:

Stage 1:

- Approx. 5 x variable sized sectors of pressure compensating drip irrigation lines (controlled by solenoid valves)
- Total approx. 3,220 lineal meters of dripline, spaced at 1m centres

Stage 2:

- Approx. 5 x variable sized sectors of pressure compensating drip irrigation lines (controlled by solenoid valves)
- Total approx. 3,220 lineal meters of dripline, spaced at 1m centres

It is proposed to include a lining and berms on the edges of the drip irrigation fields to ensure flow cannot laterally discharge through the fill and into nearby stormwater ponds or drains. There is a minimum of 5m offset from irrigation fields and wall surface water.

6.4 Staging

As mentioned above, the proposed Innoflow treatment plant is modular and can be added to in stages, therefore Stage 2 treatment requirements can be added to the treatment plant when developed along with staging the drip irrigation fields.

In discussions with WDC, there is a possibility that the public wastewater treatment plant and network will be upgraded in Waipu and can therefore service this site in the future. Therefore, Stage 2 of the development has two potential options for wastewater treatment; onsite wastewater as designed above (option 1) and connection to public network (option 2). Option 2 would reduce the required effluent dispersal field size on site and therefore potentially allow for additional building footprint in Stage 2 of the development.

7.0 Water Supply

7.1 Water Demand

If a reticulated pipe connection is provided, the water demand is estimated to be 120% of the peak wastewater demand i.e. 0.75 L/s.

Note: the onsite water demand assessment may result in different peak calculations.

7.2 Options Assessment

Public Connection

Similarly for wastewater, a connection to the public water supply network is located circa. one kilometre from the subject site at The Braigh. A 150mm watermain and 50mm diameter ridermain are present within the road reserve.

In addition, it is noted that a 375mm diameter trunk watermain is present approximately 1km to the northwest of the site along Millbrook Road, which appears to be the main water supply feed to the Ruakaka township. This is the preferred connection point being that it does not need to cross SH1. Please see utilities plan for information.

Any connection to the existing public water supply network will require further discussion with Council to understand peak demands and current capacity to be able to supply the development site.

7.3 Onsite Rainwater Harvesting

Rainwater harvesting from roof runoff is a potential option to provide water supply to the development site. This would be subject to detailed calculations to determine that sufficient storage could be accommodate from roof water capture. It is likely that a rainwater tank farm or series of tanks may be necessary to provide both potable and fire supply. Depending on outcomes of discussions with the Council, rainwater harvesting could be used in conjunction with town supply from the public network as part of flow balancing for water supply to the development.

7.4 Fire Supply

Whilst subject to detailed assessment and whether a public connection can be made or onsite rainwater harvesting is utilised, the requirements for fire supply will need detailed consideration depending on the land use and activity type. An assessment in accordance with SNZ PAS 4509:2008 New Zealand Fire Fighting Water Supplies Code of Practice as well as NZBC C1-C6 will be necessary to determine the fire supply for firefighting requirements.

7.5 Recommendation

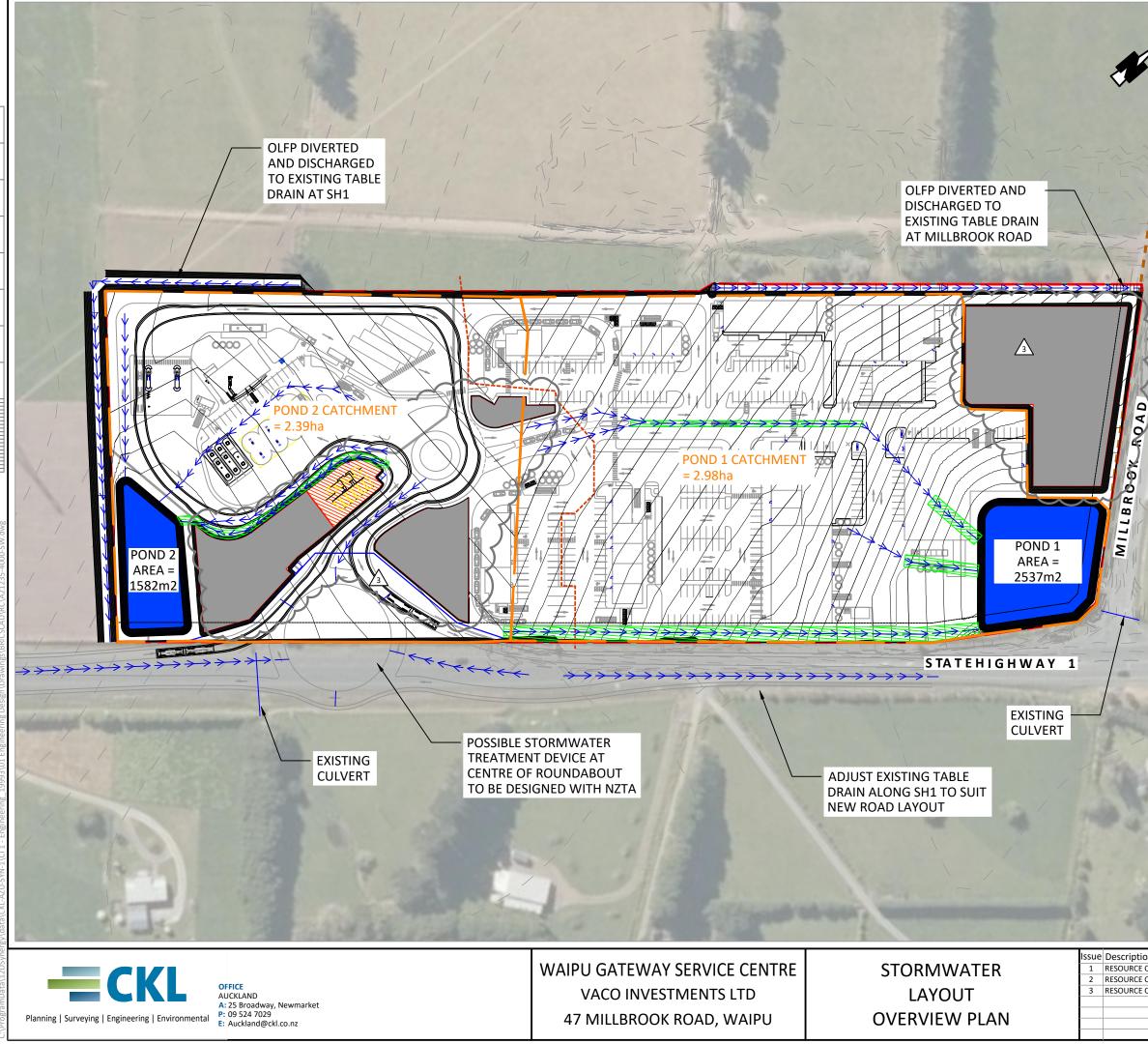
It is recommended to engage with Council to determine whether a water supply connection can be made to the available public water supply network in the vicinity of the site (either the local network or trunk main). Following these discussions, further assessment can be undertaken including onsite rainwater harvesting in the event a public connection is not possible.

8.0 Summary

Vaco Investments Ltd is proposing to undertake bulk earthworks to enable future development at 47 Millbrook Road, Waipu.

Bulk earthworks at the site will generally comprise a filling operation to achieve the design levels by importing circa 21000m³ of suitable fill material. Refer to table 1 above.

To prevent and mitigate any adverse environmental effects during the earthworks operation, erosion and sediment controls will be implemented in accordance with GD05 to control erosion and sediment discharges from the works area.


The site is subject to existing overland flow path (OLFP). OLFP running from north-west will be diverted along the boundary of the development (Refer to Appendix A plans).

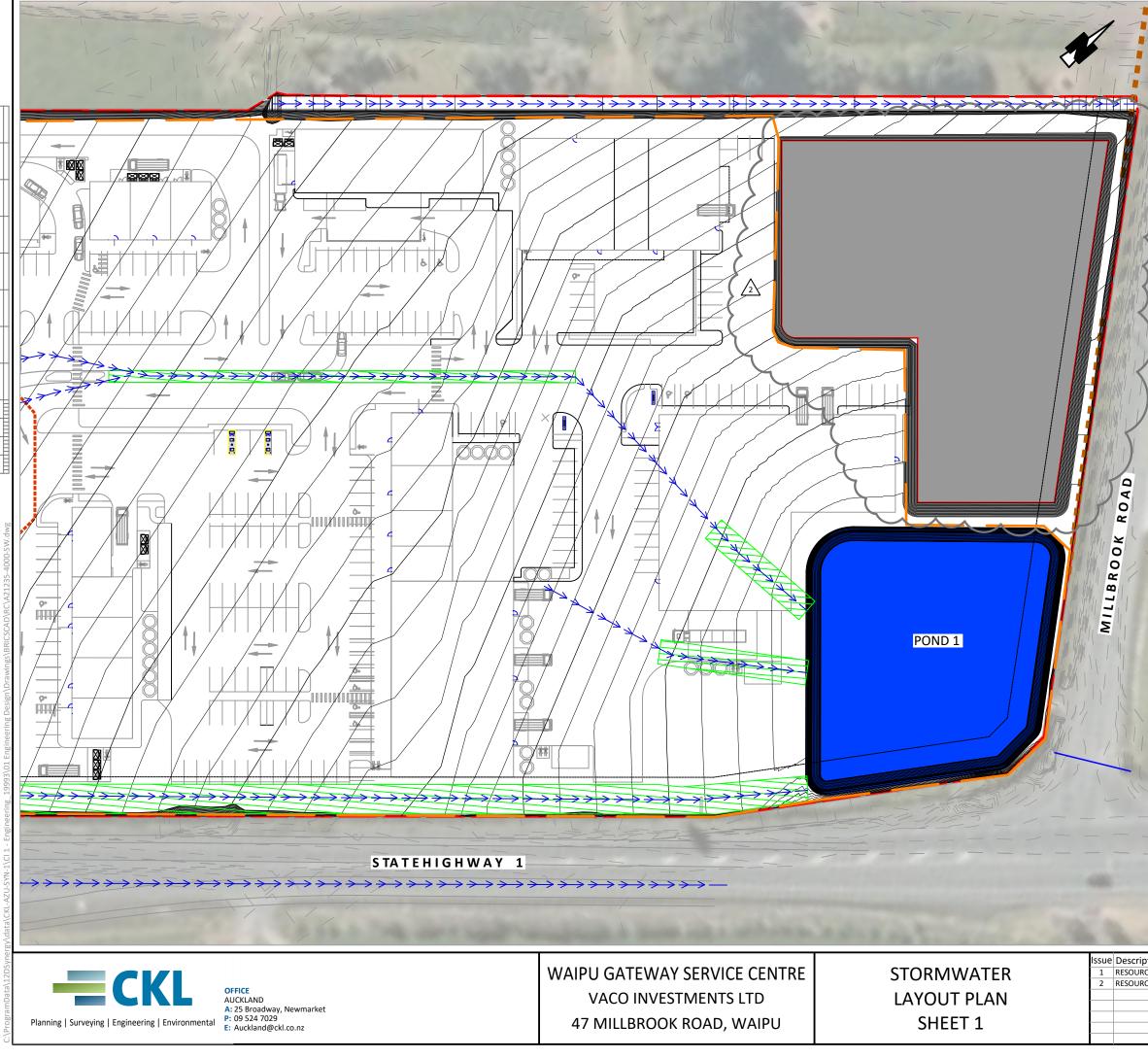
9.0 Limitations

This report has been prepared solely for the benefit of our client with respect of the particular brief and it may not be relied upon in other contexts for any other purpose without the express approval by CKL. Neither CKL nor any employee or sub-consultant accepts any responsibility with respect to its use, either in full or in part, by any other person or entity. This disclaimer shall apply notwithstanding that the report may be made available to other persons including Council for an application for permission, approval or to fulfil a legal requirement

APPENDIX A

Drawings

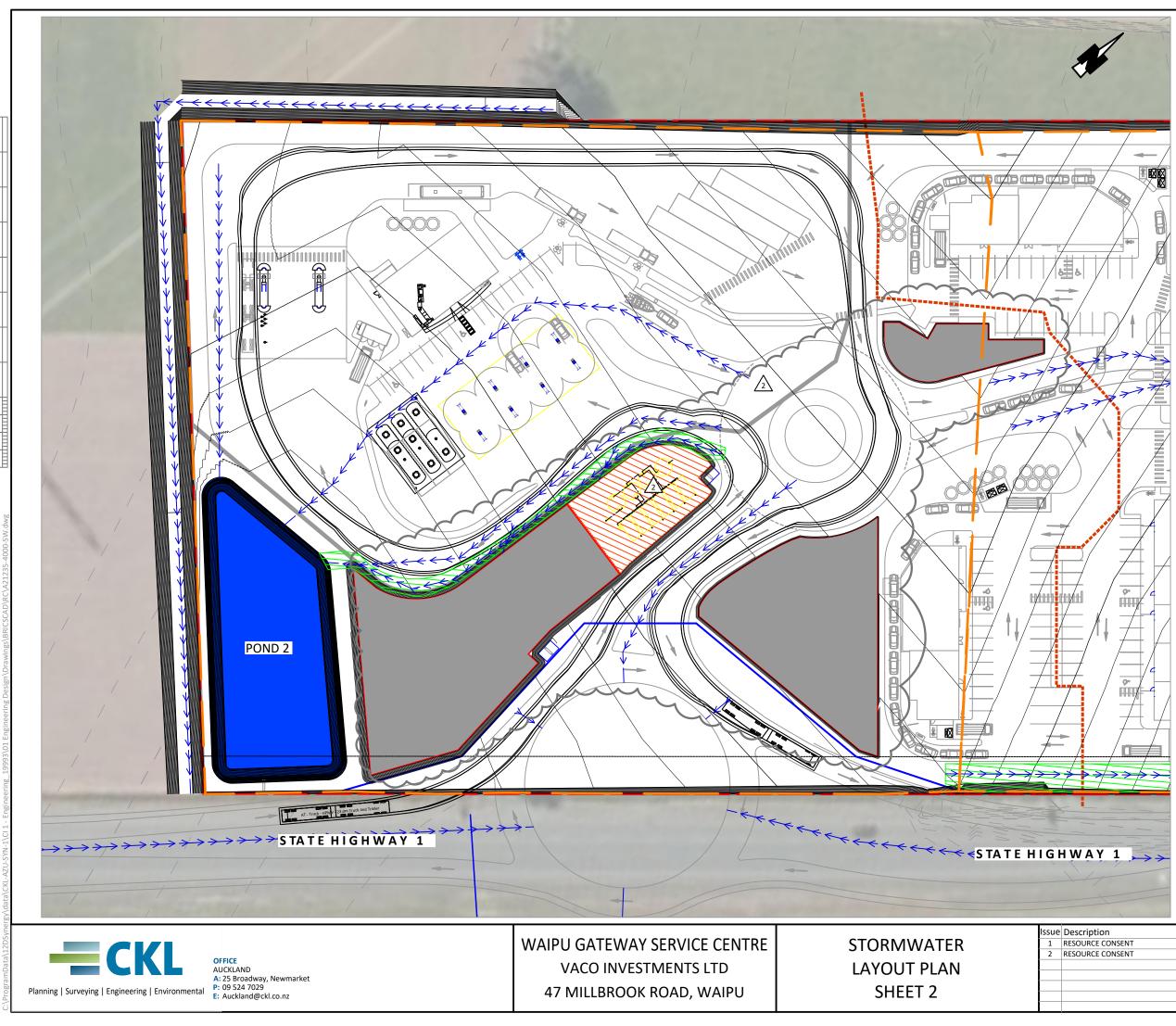
- 1. ALL WORKS AND MATERIALS TO COMPLY WITH AUCKLAND COUNCIL CODE OF PRACTICE FOR LAND DEVELOPMENT AND SUBDIVISION AND ANY AMENDMENTS.
- 2. ALL PRIVATE DRAINAGE WORKS TO COMPLY WITH THE NEW ZEALAND BUILDING CODE.
- ALL DRAINAGE WORKS SHALL BE CARRIED OUT UNDER THE SUPERVISION OF A REGISTERED DRAIN LAYER AND IN ACCORDANCE WITH CURRENT HEALTH AND SAFETY PRACTICES. WHERE REQUIRED, DRAINAGE WORKS ARE TO BE UNDERTAKEN BY AN APPROVED LICENSED CONTRACTOR (A.L.C.).
- 4. ALL MANHOLES ARE TO BE MIN. DN 1050 WITH D.I. LID AND COVERS UNLESS SHOWN OTHERWISE.
- 5. MANHOLE COVER HINGES WILL BE ORIENTED UPSTREAM FOR ALL MANHOLES LOCATED WITHIN OVERLAND FLOW PATHS
- 6. ALL MANHOLE LIDS IN TRAFFICABLE AREAS TO HAVE HEAVY DUTY CLASS E LIDS AND FRAMES.
- 7. WHERE SW CASCADES ARE PRESENT, MANHOLES TO BE FINSIHED IN 30MPa CONCRETE.
- ALL ROAD CATCHPITS TO COMPRISE STANDARD SEMI-RESSESSED IN ACCORDANCE WITH TOM STANDARD DRAWING RD0020. WHERE LOCATED IN CYCLE LANES, CATCHPITS ARE TO INCLUDE CYCLE-FRIENDLY GRATES.
- 9. ALL CP LEADS ARE TO BE MIN. DN225 CLASS 4 PIPE UNLESS SHOWN OTHERWISE.
- 10. ALL ORDINARY TRENCH BACKFILL SHALL COMPRISE SUITABLE EARTHFILL FREE OF TOPSOIL/ORGANICS AND SHALL BE WELL COMPACTED IN LAYERS NOT EXCEEDING 200mm TO ACHIEVE MINIMUM SHEAR STRENGTHS OF 100 KPa/MAX. 10% AIR VOIDS OR AS PER THE EARTHWORKS SPECIFICATION.
- 11. ALL PIPE CROSSINGS UNDER CARRIAGEWAYS/TRAFFIC AREAS TO BE HARDFILL BACKFILLED WITH APPROVED GAP65 TO 1.0m BEYOND EXTENT OF CARRIAGEWAY. TRENCH HARDFILL BACKFILL TO BE WELL COMPACTED TO ACHIEVE MIN. CLEGG HAMMER CIV = 25.
- 12. WHERE CLEARANCE BETWEEN PIPELINE CROSSOVERS IS LESS THAN 100mm THE GAP IS TO BE POLYSTYRENE PACKED IN ADDITION TO HARDFILLING OF CROSSOVERS.
- 13. ALL EXISTING BERMS, CARRIAGEWAYS AND CROSSINGS TO BE RE-INSTATED AS PER COUNCIL/CONTROLLING AUTHORITY REQUIREMENTS.


STORMWATER LEGEND:

OVERLAND FLOW (OLFP) TREATMENT + CONVEYANCE SWALE

POND CATCHMENTS

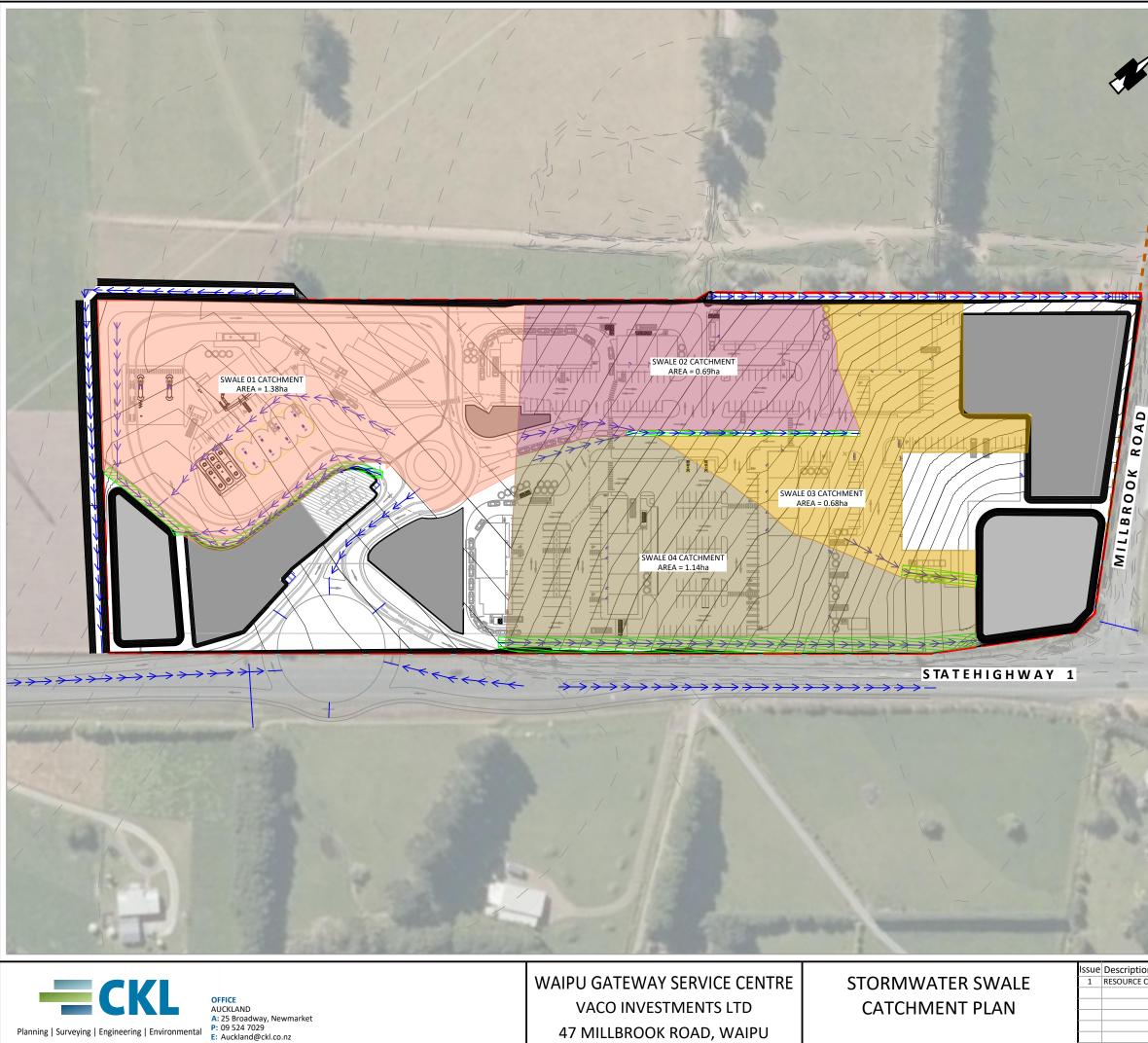
iption	Checked	Date			Date	Scale:
IRCE CONSENT	LC	2022.12.09	Designed:	RS	01.12.2022	1:1500
IRCE CONSENT	LC	2023.02.16	Drawn:	LD	01.12.2022	1.1200
IRCE CONSENT	LC	08/09/23	Checked:	LC	08/09/23	(A3 Original)
			Job	No:	Dwg	No: Rev:
			A21	235	400	0-1 3



- 1. ALL WORKS AND MATERIALS TO COMPLY WITH AUCKLAND COUNCIL CODE OF PRACTICE FOR LAND DEVELOPMENT AND SUBDIVISION AND ANY AMENDMENTS.
- 2. ALL PRIVATE DRAINAGE WORKS TO COMPLY WITH THE NEW ZEALAND BUILDING CODE.
- ALL DRAINAGE WORKS SHALL BE CARRIED OUT UNDER THE SUPERVISION OF A REGISTERED DRAIN LAYER AND IN ACCORDANCE WITH CURRENT HEALTH AND SAFETY PRACTICES. WHERE REQUIRED, DRAINAGE WORKS ARE TO BE UNDERTAKEN BY AN APPROVED LICENSED CONTRACTOR (A.L.C.).
- 4. ALL MANHOLES ARE TO BE MIN. DN 1050 WITH D.I. LID AND COVERS UNLESS SHOWN OTHERWISE.
- 5. MANHOLE COVER HINGES WILL BE ORIENTED UPSTREAM FOR ALL MANHOLES LOCATED WITHIN OVERLAND FLOW PATHS
- 6. ALL MANHOLE LIDS IN TRAFFICABLE AREAS TO HAVE HEAVY DUTY CLASS E LIDS AND FRAMES.
- 7. WHERE SW CASCADES ARE PRESENT, MANHOLES TO BE FINSIHED IN 30MPa CONCRETE.
- ALL ROAD CATCHPITS TO COMPRISE STANDARD SEMI-RESSESSED IN ACCORDANCE WITH TDM STANDARD DRAWING RD0020. WHERE LOCATED IN CYCLE LANES, CATCHPITS ARE TO INCLUDE CYCLE-FRIENDLY GRATES.
- 9. ALL CP LEADS ARE TO BE MIN. DN225 CLASS 4 PIPE UNLESS SHOWN OTHERWISE.
- 10. ALL ORDINARY TRENCH BACKFILL SHALL COMPRISE SUITABLE EARTHFILL FREE OF TOPSOIL/ORGANICS AND SHALL BE WELL COMPACTED IN LAYERS NOT EXCEEDING 200mm TO ACHIEVE MINIMUM SHEAR STRENGTHS OF 100 KPa/MAX. 10% AIR VOIDS OR AS PER THE EARTHWORKS SPECIFICATION.
- 11. ALL PIPE CROSSINGS UNDER CARRIAGEWAYS/TRAFFIC AREAS TO BE HARDFILL BACKFILLED WITH APPROVED GAP65 TO 1.0m BEYOND EXTENT OF CARRIAGEWAY. TRENCH HARDFILL BACKFILL TO BE WELL COMPACTED TO ACHIEVE MIN. CLEGG HAMMER CIV = 25.
- 12. WHERE CLEARANCE BETWEEN PIPELINE CROSSOVERS IS LESS THAN 100mm THE GAP IS TO BE POLYSTYRENE PACKED IN ADDITION TO HARDFILLING OF CROSSOVERS.
- 13. ALL EXISTING BERMS, CARRIAGEWAYS AND CROSSINGS TO BE RE-INSTATED AS PER COUNCIL/CONTROLLING AUTHORITY REQUIREMENTS.

STORMWATER LEGEND:

ption	Checked	Date			Date	Scale:
RCE CONSENT	LC	2022.12.09	Designed:	RS	01.12.2022	1:750
RCE CONSENT	LC	08/09/23	Drawn:	LD	01.12.2022	1.750
			Checked:	LC	08/09/23	(A3 Original)
			Job A21	-	Dwg 5 400	

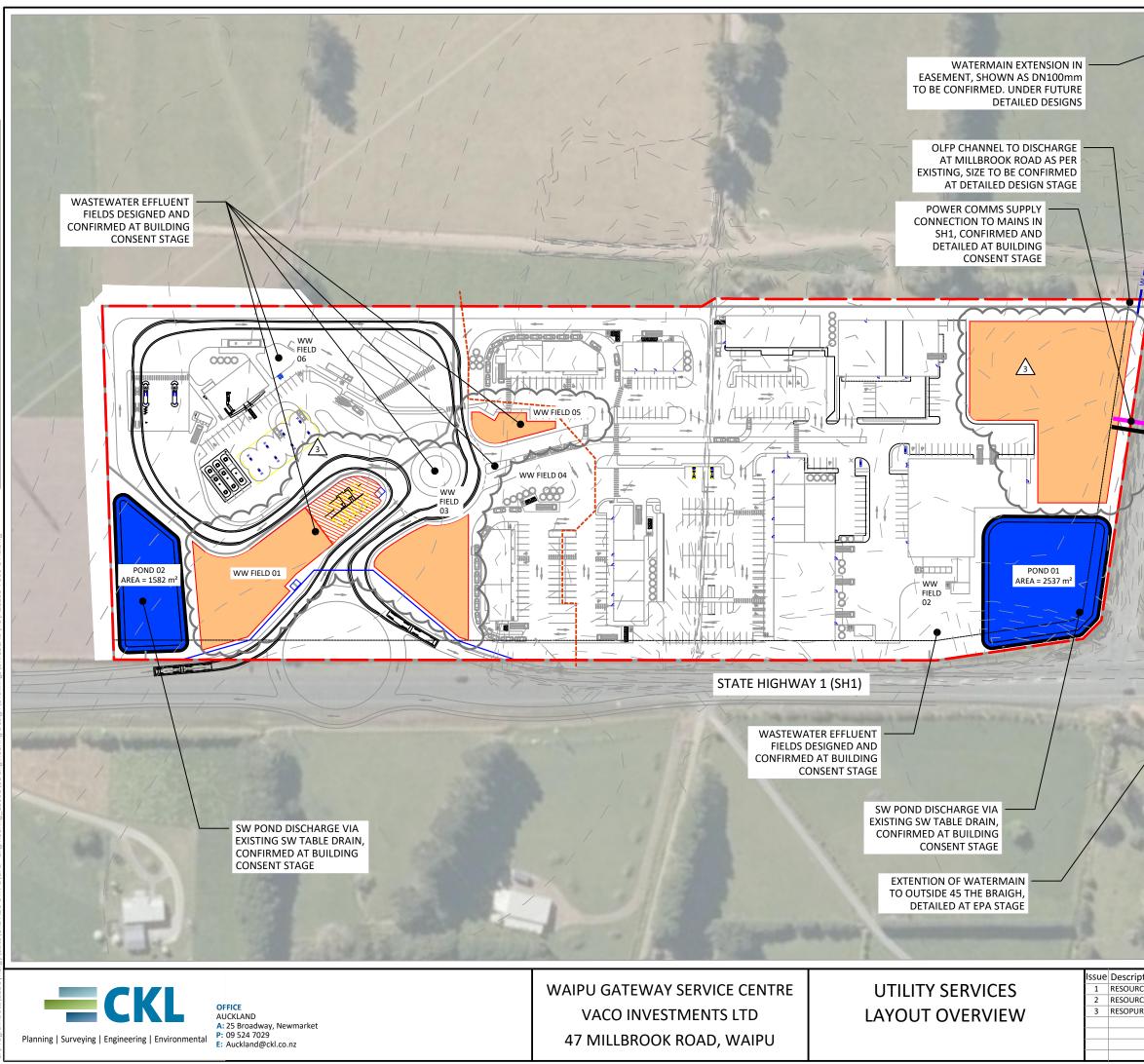


- 1. ALL WORKS AND MATERIALS TO COMPLY WITH AUCKLAND COUNCIL CODE OF PRACTICE FOR LAND DEVELOPMENT AND SUBDIVISION AND ANY AMENDMENTS.
- 2. ALL PRIVATE DRAINAGE WORKS TO COMPLY WITH THE NEW ZEALAND BUILDING CODE.
- ALL DRAINAGE WORKS SHALL BE CARRIED OUT UNDER THE SUPERVISION OF A REGISTERED DRAIN LAYER AND IN ACCORDANCE WITH CURRENT HEALTH AND SAFETY PRACTICES. WHERE REQUIRED, DRAINAGE WORKS ARE TO BE UNDERTAKEN BY AN APPROVED LICENSED CONTRACTOR (A.L.C.).
- 4. ALL MANHOLES ARE TO BE MIN. DN 1050 WITH D.I. LID AND COVERS UNLESS SHOWN OTHERWISE.
- 5. MANHOLE COVER HINGES WILL BE ORIENTED UPSTREAM FOR ALL MANHOLES LOCATED WITHIN OVERLAND FLOW PATHS
- 6. ALL MANHOLE LIDS IN TRAFFICABLE AREAS TO HAVE HEAVY DUTY CLASS E LIDS AND FRAMES.
- 7. WHERE SW CASCADES ARE PRESENT, MANHOLES TO BE FINSIHED IN 30MPa CONCRETE.
- ALL ROAD CATCHPITS TO COMPRISE STANDARD SEMI-RESSESSED IN ACCORDANCE WITH TDM STANDARD DRAWING RD0020. WHERE LOCATED IN CYCLE LANES, CATCHPITS ARE TO INCLUDE CYCLE-FRIENDLY GRATES.
- 9. ALL CP LEADS ARE TO BE MIN. DN225 CLASS 4 PIPE UNLESS SHOWN OTHERWISE.
- 10. ALL ORDINARY TRENCH BACKFILL SHALL COMPRISE SUITABLE EARTHFILL FREE OF TOPSOIL/ORGANICS AND SHALL BE WELL COMPACTED IN LAYERS NOT EXCEEDING 200mm TO ACHIEVE MINIMUM SHEAR STRENGTHS OF 100 KPa/MAX. 10% AIR VOIDS OR AS PER THE EARTHWORKS SPECIFICATION.
- 11. ALL PIPE CROSSINGS UNDER CARRIAGEWAYS/TRAFFIC AREAS TO BE HARDFILL BACKFILLED WITH APPROVED GAP65 TO 1.0m BEYOND EXTENT OF CARRIAGEWAY. TRENCH HARDFILL BACKFILL TO BE WELL COMPACTED TO ACHIEVE MIN. CLEGG HAMMER CIV = 25.
- 12. WHERE CLEARANCE BETWEEN PIPELINE CROSSOVERS IS LESS THAN 100mm THE GAP IS TO BE POLYSTYRENE PACKED IN ADDITION TO HARDFILLING OF CROSSOVERS.
- 13. ALL EXISTING BERMS, CARRIAGEWAYS AND CROSSINGS TO BE RE-INSTATED AS PER COUNCIL/CONTROLLING AUTHORITY REQUIREMENTS.

STORMWATER LEGEND:

otion	Checked	Date			Date	Scale:
CE CONSENT	LC	2022.12.09	Designed:	RS	01.12.2022	1:750
CE CONSENT	LC	08/09/23	Drawn:	LD	01.12.2022	1.750
			Checked:	LC	08/09/23	(A3 Original)
			Job	No:	Dwg	No: Rev:
			A21	235	5 4002	2-12

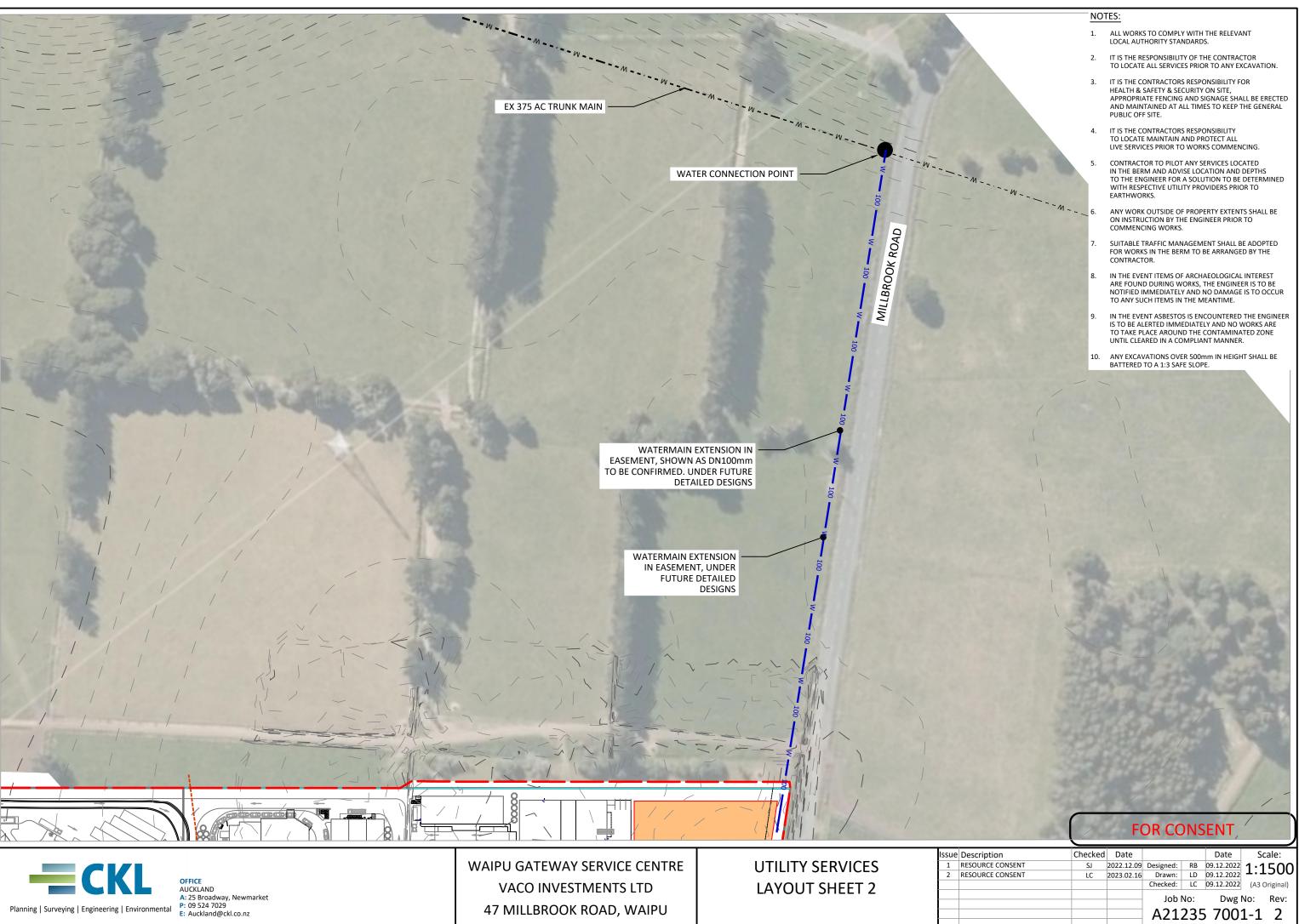
- 1. ALL WORKS AND MATERIALS TO COMPLY WITH AUCKLAND COUNCIL CODE OF PRACTICE FOR LAND DEVELOPMENT AND SUBDIVISION AND ANY AMENDMENTS.
- 2. ALL PRIVATE DRAINAGE WORKS TO COMPLY WITH THE NEW ZEALAND BUILDING CODE.
- ALL DRAINAGE WORKS SHALL BE CARRIED OUT UNDER THE SUPERVISION OF A REGISTERED DRAIN LAYER AND IN ACCORDANCE WITH CURRENT HEALTH AND SAFETY PRACTICES. WHERE REQUIRED, DRAINAGE WORKS ARE TO BE UNDERTAKEN BY AN APPROVED LICENSED CONTRACTOR (A.L.C.).
- 4. ALL MANHOLES ARE TO BE MIN. DN 1050 WITH D.I. LID AND COVERS UNLESS SHOWN OTHERWISE.
- 5. MANHOLE COVER HINGES WILL BE ORIENTED UPSTREAM FOR ALL MANHOLES LOCATED WITHIN OVERLAND FLOW PATHS
- 6. ALL MANHOLE LIDS IN TRAFFICABLE AREAS TO HAVE HEAVY DUTY CLASS E LIDS AND FRAMES.
- 7. WHERE SW CASCADES ARE PRESENT, MANHOLES TO BE FINSIHED IN 30MPa CONCRETE.
- ALL ROAD CATCHPITS TO COMPRISE STANDARD SEMI-RESSESSED IN ACCORDANCE WITH TDM STANDARD DRAWING RD0020. WHERE LOCATED IN CYCLE LANES, CATCHPITS ARE TO INCLUDE CYCLE-FRIENDLY GRATES.
- 9. ALL CP LEADS ARE TO BE MIN. DN225 CLASS 4 PIPE UNLESS SHOWN OTHERWISE.
- 10. ALL ORDINARY TRENCH BACKFILL SHALL COMPRISE SUITABLE EARTHFILL FREE OF TOPSOIL/ORGANICS AND SHALL BE WELL COMPACTED IN LAYERS NOT EXCEEDING 200mm TO ACHIEVE MINIMUM SHEAR STRENGTHS OF 100 kPa/MAX. 10% AIR VOIDS OR AS PER THE EARTHWORKS SPECIFICATION.
- 11. ALL PIPE CROSSINGS UNDER CARRIAGEWAYS/TRAFFIC AREAS TO BE HARDFILL BACKFILLED WITH APPROVED GAP65 TO 1.0m BEYOND EXTENT OF CARRIAGEWAY. TRENCH HARDFILL BACKFILL TO BE WELL COMPACTED TO ACHIEVE MIN. CLEGG HAMMER CIV = 25.
- 12. WHERE CLEARANCE BETWEEN PIPELINE CROSSOVERS IS LESS THAN 100mm THE GAP IS TO BE POLYSTYRENE PACKED IN ADDITION TO HARDFILLING OF CROSSOVERS.
- 13. ALL EXISTING BERMS, CARRIAGEWAYS AND CROSSINGS TO BE RE-INSTATED AS PER COUNCIL/CONTROLLING AUTHORITY REQUIREMENTS.

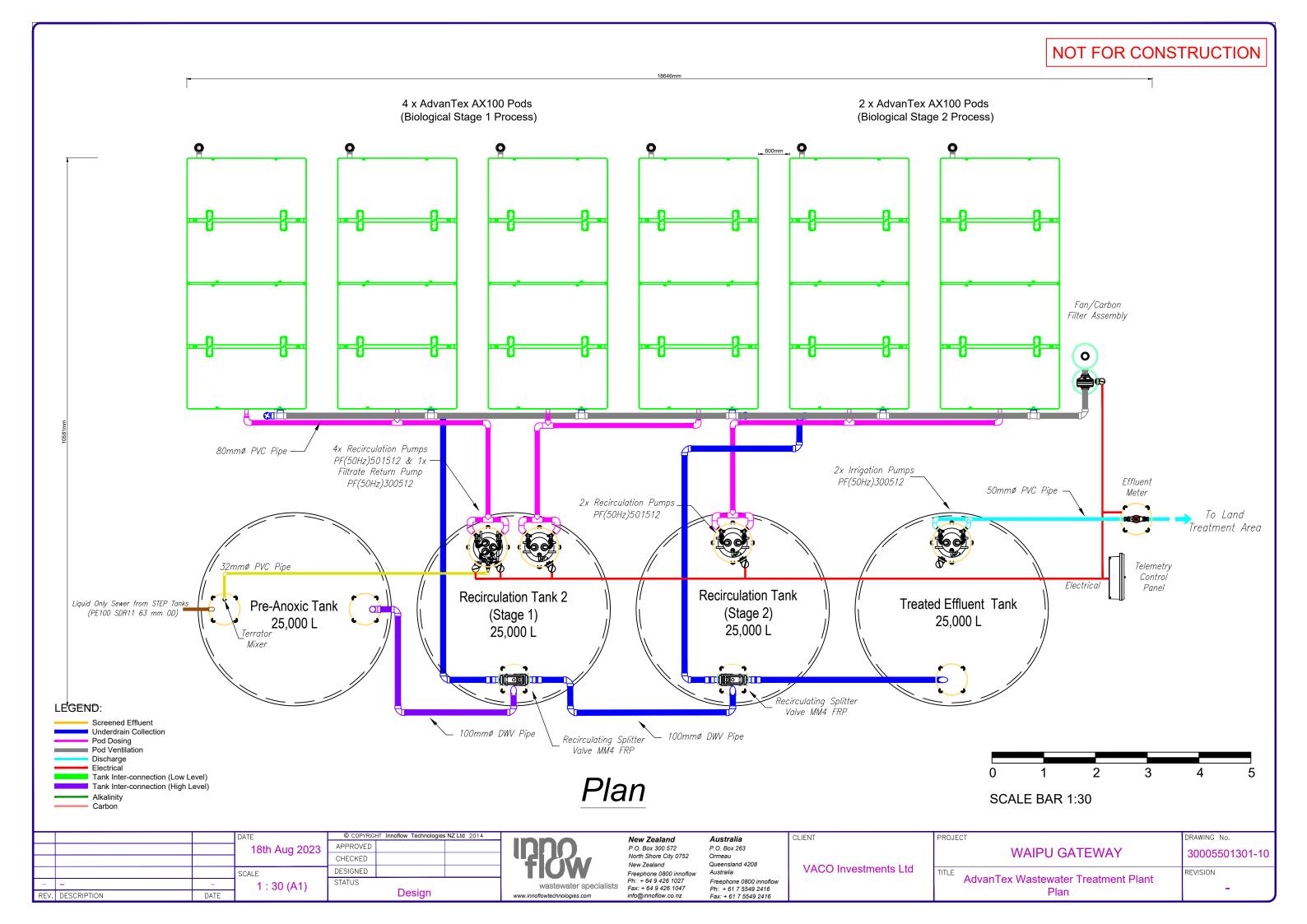

STORMWATER LEGEND:

OVERLAND FLOW (OLFP)

TREATMENT + CONVEYANCE SWALE

ription	Checked	Date			Date	Scale:	
IRCE CONSENT	LC	08.09.2023	Designed:	FDP	08.09.2023	1:1500	
			Drawn:	RB	08.09.2023	1.1200	
			Checked:	LC	08.09.2023	(A3 Original)	
			Job	No:	Dwg	No: Rev:	
			A21235 4200-1 1				





NOTES:

- 1. ALL WORKS TO COMPLY WITH THE RELEVANT LOCAL AUTHORITY STANDARDS.
- 2. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE ALL SERVICES PRIOR TO ANY EXCAVATION.
- 3. IT IS THE CONTRACTORS RESPONSIBILITY FOR HEALTH & SAFETY & SECURITY ON SITE, APPROPRIATE FENCING AND SIGNAGE SHALL BE ERECTED AND MAINTAINED AT ALL TIMES TO KEEP THE GENERAL PUBLIC OFF SITE.
- 4. IT IS THE CONTRACTORS RESPONSIBILITY TO LOCATE MAINTAIN AND PROTECT ALL LIVE SERVICES PRIOR TO WORKS COMMENCING.
- CONTRACTOR TO PILOT ANY SERVICES LOCATED IN THE BERM AND ADVISE LOCATION AND DEPTHS TO THE ENGINEER FOR A SOLUTION TO BE DETERMINED WITH RESPECTIVE UTILITY PROVIDERS PRIOR TO EARTHWORKS.
- 6. ANY WORK OUTSIDE OF PROPERTY EXTENTS SHALL BE ON INSTRUCTION BY THE ENGINEER PRIOR TO COMMENCING WORKS.
- 7. SUITABLE TRAFFIC MANAGEMENT SHALL BE ADOPTED FOR WORKS IN THE BERM TO BE ARRANGED BY THE CONTRACTOR.
- IN THE EVENT ITEMS OF ARCHAEOLOGICAL INTEREST ARE FOUND DURING WORKS, THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY AND NO DAMAGE IS TO OCCUR TO ANY SUCH ITEMS IN THE MEANTIME.
- IN THE EVENT ASBESTOS IS ENCOUNTERED THE ENGINEER IS TO BE ALERTED IMMEDIATELY AND NO WORKS ARE TO TAKE PLACE AROUND THE CONTAMINATED ZONE UNTIL CLEARED IN A COMPLIANT MANNER.
- 10. ANY EXCAVATIONS OVER 500mm IN HEIGHT SHALL BE BATTERED TO A 1:3 SAFE SLOPE.

otion	Checked	Date			Date	Scale:
CE CONSENT	SJ	09.12.2022	Designed:	RS	16.11.2022	1:1500
CE CONSENT	LC	2023.02.16	Drawn:	LD	16.11.2022	1.1200
RCE CONSENT	LC	08/09/23	Checked:	LC	08/09/23	(A3 Original)
			Job	No:	Dwg	No: Rev:
			A21	235	700	0-1 3

APPENDIX B

Calculations

Client : Site address : Job name : Job number :

Job Name	Waipu Gateway	File:
Date	9/11/2022	Sheet:
Design	FDP	Review

A21235-EV- -WW Calcs 22.xlsx WW (rev JS) JR

A21235

Antony Arnerich

47 Millbrook Rd

Waipu Gateway

Wastewater

Design Criteria - Refer Watercare CoP Table 5.1.3

Residential:

ADWF =	2	Peaking factor - self cleansing
PWWF	5	Peaking factor - peak design flow dry retail
PWWF	6.7	Peaking factor - peak design flow wet retail

Post-Development Flows

		Average				Peak factors fo	Peak factors for pipe sizine			
	Subcatchment Details	Floor Area (m2)	Design WW flow (I/day/m2) or (I/day/15m2)	Design WW flow ADWF (I/day)	PDWF Peaking Factor	PWWF Peaking Factor	Design PDWF (L/s)	Design PWWF (L/s)		
BP (Building 1)	Wet retail	305	15	4575.0	2.0	6.7	0.106	0.355		
Burger King (Building 11)	Wet retail	260	15	3900.0	2.0	6.7	0.090	0.302		
Food (building 12)	Wet retail	148	15	2220.0	2.0	6.7	0.051	0.172		
Stage 1 total		713		10695.0			0.20	0.83	10.695	
Building 13	Dry retail	408	65	530.4	2.0	5.0	0.012	0.031		
Building 14	Wet retail	113	15	1695.0	2.0	6.7	0.039	0.131		
Building 16	Dry retail	1170	65	1521.0	2.0	5.0	0.035	0.088		
Building 18	Dry retail	296	65	384.8	2.0	5.0	0.009	0.022		
Building 19	Dry retail	90	65	117.0	2.0	5.0	0.003	0.007		
Building 19A	Dry retail	90	65	117.0	2.0	5.0	0.003	0.007		
Building 20	Dry retail	114	65	148.2	2.0	5.0	0.003	0.009		
Building 20A	Dry retail	135	65	175.5	2.0	5.0	0.004	0.010		
Building 22	Wet retail	260	15	3900.0	2.0	6.7	0.090	0.302		
Building 23	Wet retail	148	15	2220.0	2.0	6.7	0.051	0.172		
Building 24	Dry retail	294	65	382.2	2.0	5.0	0.009	0.022		
Building 25	Dry retail	500	65	650.0	2.0	5.0	0.015	0.038		
Building 28	Dry retail	1648	65	2142.4	2.0	5.0	0.050	0.124		
Building 29	Dry retail	930	65	1209.0	2.0	5.0	0.028	0.070		
TOTAL		6909	805	25887.5			0.60	1.86	25.8875	

Based on Lance M rev

Commercial activity type	Design wastewater flow allowance	Design wastewater peaking factors	
		Peaking factor: Self-Cleansing Design Flow (Normal PDWF)	Peaking factor: Peak Design Flow(PWWF or Exceptional PDWF)
Dry retail (Note 1) (where kitchen/toilets are <u>not</u> normally made available to customers)	1 person per 50m ² net floor area at 65 litres per person per day.	2.0	5.0
Office buildings and dry retail where toilet facilities, etc. are provided to customers.	1 person per 15m ² net floor area at 65 litres per person per day.	2.0	5.0
Wet retail (Note 2): Food and or beverage retail/preparation e.g. coffee shop, restaurant, bar, butcher, fresh fruit and vegetable retail.	15 litres per day per net m ² of floor area (including kitchen and dining areas).	2.0	6.7

Commercial activity type	Design wastewater <mark>f</mark> low allowance	Design wastewa	ter peaking factors
		Peaking factor: Self-Cleansing Design Flow (Normal PDWF)	Peaking factor: Peak Design Flow(PWWF or Exceptional PDWF)
Unknown and site area >10ha, <100ha	1 L/s/ha (complete land area)	2.0	6.7
Site area >100ha	Refer to transmission design standards	-	-

Table notes:

 Dry retail is where water is normally only used by staff for their own personal food preparation / toileting needs. Examples include: clothes shop, hardware retail.

 Wet retail is where water is used to prepare food product for customers. Examples include: café, lunch bar, restaurant, butchery, fresh fruit and vegetable, food court-bar and supermarkets.

Important:

Net floor area is the total floor area of the building (exclude any open land areas), less non-productive areas, such as:

lobbies; lifts; machine rooms; electrical services; stainwells; fire escapes; corridors and other passages used in common with other occupiers; car parking areas; etc. If net area is unknown, and the type of buildings are unknown, it can be assumed that the Net floor area is = 80% of the gross floor area of the building.

As a guide to how activities will be assessed, commercial washing activities such as car / boat washing activities, etc. would be regarded as a "wet-industry" and not as a commercial- wet retail, as the water is being used as a part of a process (washing). Large-scale food-processing (i.e., for supply to commercial customers, as opposed to on-site retail customers) would be regarded as an industrial type activity. Preparation / manufacture of non-food based products, is also regarded as an industrial torivity. Industry design flows are detailed in the section below.

CKL Limited PO Box 99 463, Auckland 1149 L2, 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032

Job Name	47 Millbrook Rd, Waipu	Sheet Name	ENTIRE WW ST 5 DLR 5
Job No.	A21235	Ву	FDP
Date	28/07/2023	Checked	CF

Aim: Permitted PCDI Effluent Disposal Area Sizing for existing dwelling

Design Flowrate		Comments	
Total Design Flow (L/d)	25887.00	From other spreadsheet	Rev by JS - 5 Sept Bsed on Lance M revs
Site Requirements			
Soil Type	5		
Design Loading Rate (mm/d)	5		
Area Required (m ²)	5177		
Reserve Area 30% (m ²)	1553		
Total Area Required 30% (m ²)	6731		

CKL Limited PO Box 99 463, Auckland 1149 L2, 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032

Job Name	47 Millbrook Road, Waipu	File Name	A21235-EVSMP2.xlsx
Job No.	A21235	Sheet Name	Area summary
Date	8/09/2023	File Path	C:\ProgramData\12DSynergy\data\CKL-AZU-SYN-1\Cl 1 - Engineering_19
Ву	FDP	Checked	

Total Area summary

Coverage	Pre-develo	pment (ha)	Post-development (ha)		
Roof	0.000	0%	0.765	13%	
Impervious	0.000	0%	3.098	52%	
Grass/pervious	5.913	100%	2.051	35%	
TOTAL AREA	5.913	100%	5.913	100%	

Pre- Sub Catchments summary

Coverage	Stage 1 (ha)	Stage 2 (ha)	
Impervious	0.000	0.000	
Pervious	2.255	3.486	
TOTAL AREA	2.255	3.486	*excludes roundabout not falling to a pond

Post- SubCatchment summary

Coverage	Stage 1 (ha)	Stage 2 (ha)
Roof	0.177	0.588
Other Impervious	1.109	1.816
Pervious draining to pond	0.836	0.836
Pervious direct discharge	0.133	0.246
TOTAL AREA	2.255	3.4860

Pre- Sub Catchments summary (HEC)

Coverage	Stage 1 (km2)	Stage 2 (km2)
Impervious	0.00000	0.00000
Pervious	0.02255	0.03486
TOTAL AREA	0.02255	0.03486

Post- SubCatchment summary (HEC)

Coverage	Stage 1 (km2)	Stage 2 (km2)
Roof	0.0018	0.0059
Impervious	0.0111	0.0182
Total Imp	0.0129	0.0240
Pervious draining to pond	0.0084	0.0084
Pervious direct discharge	0.0013	0.0025
TOTAL AREA	0.0225	0.0349

CKL Limited PO Box 99 463, Auckland 1149 L2, 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032

Job Name	47 Millbrook Road, Waipu	File Name	A21235-EVSMP2.xlsx
Job No.	A21235	Sheet Name	Pond Stage Storage
Date	8/09/2023	File Path	C:\ProgramData\12DSynergy\data\CKL-AZU-SYN-1\Cl 1 - Engineering_19993\0
Ву	FDP	Checked	

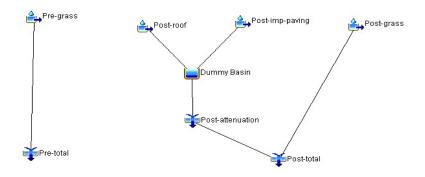
Pond Storage-Elevation

Stage 1 Pond (Pond 2)

Elevation	Storage (m3)	Storage (1000m3)
7.4	0	0.0000
7.5	115.63	0.1156
7.6	235.85	0.2359
7.7	360.72	0.3607
7.8	490.28	0.4903
7.9	624.60	0.6246
8	763.73	0.7637

Stage 2 Pond (Pond 1)

	•		
Elevation		Storage (m3)	Storage (1000m3)
6	.4	0	0.0000
6	.5	204.98	0.2050
6	.6	415.25	0.4152
6	.7	630.87	0.6309
6	.8	851.90	0.8519
6	.9	1078.39	1.0784
	7	1310.39	1.3104



Job Name	47 Millbrook Road, Waipu	File Name	A21235-EVSMP2.xlsx
Job No.	A21235	Sheet Name	HEC HMS model
Date	30/11/2021	File Path	C:\ProgramData\12DSynergy\data\CKL-AZU-SYN-1\Cl 1
Ву	FDP	Checked	

Assumptions

Land use		Pervious	Impervious
SCS Curve Number		74.0	98.0
Initial Abstraction, la	mm	5.0	0.0
Time of Concentration (tc)	min	10.0	
Time of Concentraion for SCS	min	6.7	

Basin model

Model result - Pre Development

Storm ARI	Stage 1 (m3/s)	Stage 2 (m3/s)	Total (m3/s)	
5YR	0.393	0.609	1.002	
100YR	0.877	1.361	2.238	
80% 100YR	0.702	1.089	1.790	

Model result - Pre Development

Storm ARI	Stage 1 (m3/s)	Stage 2 (m3/s)	Total (m3/s)
5YR	0.326	0.491	0.817
100YR	0.690	1.026	1.716

Pond Details	Stage 1 Pond	Stage 2 Pond
100yr Peak Volume (m3)	706	1253
Peak eleveation (mRL)	7.96	6.98
Bottom of pond (mRI)	7.40	6.40
Peak depth (m)	0.56	0.58

		2 Simulation Run: I						2 Simulation Run: Pr		
End of Run:	01Jan2000, 00:00 02Jan2000, 00:00 23Nov2022, 14:27		Pre and Post- Model: Met-5yrCC ifications:Control 1	80%Attenuation		End of Run:	01Jan2000, 00:00 02Jan2000, 00:00 e:18Nov2022, 13:31	Meteorologic	Pre and Post Model: Met-100yrCC fications:Control 1	-80%Attenuation
Show Elements: All	Elements 🖂	Volume Units: 🖲 MM	I 🔿 1000 M3 🛛 S	orting: Hydrolog	ic 🗸	Show Elements: All	Elements \vee	Volume Units: MM	○ 1000 M3	Sorting: Hydrolog
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)		Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
ost-Stage 1 Imp	0.0129	0.33041	01Jan2000, 12:02	144.49	~	Post-Stage 1 Perv	0.0084	0.32751	01Jan2000, 12:03	201.05
ost-Stage 1 Perv	0.0084	0.14655	01Jan2000, 12:03	89.33		Catchment 1 Pond	0.0213	0.65266	01Jan2000, 12:09	238.34
Catchment 1 Pond	0.0213	0.31052	01Jan2000, 12:09	120.64		Post-Stage 1 Perv	0.0013	0.05069	01Jan2000, 12:03	201.05
ost-Stage 1 Perv	0.0013	0.02268	01Jan2000, 12:03	89.33		Pre-Stage 2	0.0349	1.36071	01Jan2000, 12:03	201.05
re-Stage 2	0.0349	0.60887	01Jan2000, 12:03	89.33		Pre-Stage 1	0.0225	0.87725	01Jan2000, 12:03	201.05
re-Stage 1	0.0225	0.39254	01Jan2000, 12:03	89.33		Pre-total	0.0574	2.23796	01Jan2000, 12:03	201.05
re-total	0.0574	1.00140	01Jan2000, 12:03	89.33		Post-Stage 2 Imp	0.0240	1.12467	01Jan2000, 12:02	267.91
ost-Stage 2 Imp	0.0240	0.61472	01Jan2000, 12:02	144.49		Post-Stage 2 Perv	0.0084	0.32751	01Jan2000, 12:03	201.05
ost-Stage 2 Perv	0.0084	0.14655	01Jan2000, 12:03	89.33		Catchment 2 Pond	0.0324	0.95896	01Jan2000, 12:09	246.61
atchment 2 Pond	0.0324	0.46252	01Jan2000, 12:10	127.57		Post-Catchmnet 2	0.0025	0.09747	01Jan2000, 12:03	201.05
ost-Catchmnet 2	0.0025	0.04362	01Jan2000, 12:03	89.33		Post-Total Stage 2	0.0349	1.02693	01Jan2000, 12:08	243.34
ost-Total Stage 2	0.0349	0.49093	01Jan2000, 12:09	124.83	~	Post-total Stage 1	0.0226	0.69008	01Jan2000, 12:08	236.19
ummary Results fi	Project: Waipu2		Pre and post-100yr) <u>e e e e e</u> 20			Project: Waipu2	hment 2 Pond" Simulation Run: Pre		
art of R 01Ja nd of R 02Ja ompute Ti 18N	n2000, 00:00		Pre and F c Model: Met-100y cifications:Control 1	ost-80%Atter rrCC	uatior		in2000, 00:00 in2000, 00:00 ov2022, 13:31:27		Pre and Po Model: Met-100yr ications:Control 1	ost-80%Attenua CC
Computed Result:		Units: 🖲 MM 🔿) 1000 M3			Computed Result		Units: MM O 1	000 M3	
Peak Inflow: Peak Discharge: Inflow Volume:					09	Peak Inflow: Peak Discharge: Inflow Volume: Discharge Volum	1.45192 (M3/S 0.95896 (M3/S 250.58 (MM)		Peak Discharge:01	Jan2000, 12:02 Jan2000, 12:09 25270 (1000 M3 9751 (M)

Job Name	Iona Road, Havelock North	File Name	A21235-EVSMP2.xlsx
Job No.	A18259	Sheet Name	HIRDS
Date	30/11/2021	File Path	C:\ProgramData\12DSynergy\data\CKL-AZU-SYN-1\Cl 1 - Engineering_1999
Ву	CL	Checked	

24 hr Rainfall Depth

Reference: HBRC Waterways Design Guidelines Stormwater Management

ARI	Hirds Rainfall Depth (mm) *	Climage change Factor	Rainfall Depth +CC (mm)
5YR	125.0	20.00%	150.0
10yr	148.0	20.00%	177.6
100yr	228.0	20.00%	273.6

HIRDS V4 Depth-Duration-Frequency Results Site Name: 47 millbrook road, waipu Coordinate System: WGS84 Longitude: 174.4243 Latitude: -35.9827

Rainfall depths (mm) :: Historical Data

ARI	AEP	10m	20m	30m	1h	2h	6h	12	2h 24	h
	1.58	0.633	8.79	13.3	16.8	24.2	33.8	53.9	69.3	86.5
	2	0.5	9.67	14.7	18.5	26.6	37.2	59.3	76.3	95.2
	5	0.2	12.7	19.3	24.3	35.1	49	78.1	101	125
	10	0.1	15	22.8	28.7	41.4	57.8	92.1	119	148
	20	0.05	17.4	26.4	33.2	47.9	66.9	107	137	171
	30	0.033	18.8	28.5	35.9	51.8	72.4	115	148	185
	40	0.025	19.8	30.1	37.8	54.6	76.3	122	156	195
	50	0.02	20.6	31.3	39.4	56.8	79.4	126	163	203
	60	0.017	21.3	32.3	40.6	58.6	81.9	130	168	209
	80	0.012	22.3	33.9	42.6	61.4	85.9	137	176	220
	100	0.01	23.1	35.1	44.1	63.7	89	142	182	228
	250	0.004	26.4	40.1	50.4	72.7	102	162	208	260

Rainfall intensities (mm/hr) :: Historical Data

ARI	AEP	10n	າ 20 m	30m	1h	2h	6h	12h	2	24h
	1.58	0.633	52.7	40	33.5	24.2	16.9	8.98	5.78	3.6
	2	0.5	58	44	36.9	26.6	18.6	9.88	6.36	3.97
	5	0.2	76.4	58	48.6	35.1	24.5	13	8.38	5.22
	10	0.1	90.2	68.4	57.4	41.4	28.9	15.4	9.88	6.16
	20	0.05	104	79.2	66.4	47.9	33.5	17.8	11.4	7.13
	30	0.033	113	85.6	71.8	51.8	36.2	19.2	12.4	7.71
	40	0.025	119	90.3	75.7	54.6	38.2	20.3	13	8.13
	50	0.02	124	93.9	78.7	56.8	39.7	21.1	13.6	8.46
	60	0.017	128	96.9	81.2	58.6	40.9	21.7	14	8.73
	80	0.012	134	102	85.2	61.4	42.9	22.8	14.7	9.15
	100	0.01	139	105	88.2	63.7	44.5	23.6	15.2	9.48
	250	0.004	158	120	101	72.7	50.8	27	17.4	10.8

Design of swale 1

A21235 Waipu Gateway 8/09/2023 MB File Name Sheet Name Path Checked CKL Limited PO Box 99 463, Auckland 1149 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032 A21235-EV- -Swale Design- draft.xlsx Swale 1

JR

 Assumptions:

 Runoff Coefficient (c):
 c=0.95 for roof

 c=0.9 for driveway

 c=0.3 for permeable surafces

 Roughness factor (k):
 k = 1.5 (conservative value for existing concrete & plastic pipes)

 See NZS4404 Table 4.2 for more details

Design rainfall:	100yr 10min +CC	187.0 mm/hr

Catchment Details

Total Catchment area (ha)	1.38
Total Catchment area (m2)	13800

	Impervious	Pervious
Surface area (m ²)	8556	5244
WQ intensity (mm/hr)	10)
100% AEP Rainfall (mm/hr)	187.0	
С	0.95	0.3
WQ Q _p (L/s) (Roads Runoff)	22.6	
100% AEP qP(L/s)	422.55	81.78
Total Flow	504.34	

100yrCC Swale

	100yrCC	WQV
Catchment area (m²)	13,800	13,800
Q (m³/s)	0.504	0.023
Depth, d (m)	0.2	0.1
Longitudinal Slope	1.60%	1.60%
Side Slopes, z	3	3
Base Width, b (m)	2.00	2.00
Top width	3.20	2.60
Area (m²)	0.52	0.23
Wetted Perimeter (m)	3.26	2.63
Hydraulic Radius (m)	0.16	0.09
n	0.03	0.25
Q swale (m³/s)	0.640	0.023
Velocity (m/s)	1.23	0.10
Residence time (mins)	0.00	9.00
Length (m)		53
Total Length (m)		107
Freeboard for 100yr (m)	0.15	

Base width (m)	2.00
Total Height (m)	0.350

Top width (m)	4.10
Longitudinal slope (%)	1.60%
Side slope (H:V)	3

Design of swale 2

Assumptions:

Runoff Coefficient (c):

Roughness factor (k):

A21235 Waipu Gateway 8/09/2023 MB File Name Sheet Name Path Checked CKL Limited PO Box 99 463, Auckland 1149 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032 A21235-EV- -Swale Design-Swale 2

JR

c=0.95 for roof c=0.9 for driveway c=0.3 for permeable surafces k = 1.5 (conservative value for existing concrete & plastic pipes) See NZS4404 Table 4.2 for more details

Design rainfall:	100yr 10min +CC	187.0 mm/hr

Catchment Details

Total Catchment area (ha)	0.69
Total Catchment area (m2)	6900

	Impervious	Pervious
Surface area (m ²)	4278	2622
WQ intensity (mm/hr)	10	0
100% AEP Rainfall (mm/hr)	187.0	
С	0.95	0.3
WQ Q _p (L/s) (Roads Runoff)	11.3	
100% AEP qP(L/s)	211.28	40.89
Total Flow	252.17	

100yrCC Swale

	100yrCC	WQV
Catchment area (m²)	6,900	6,900
Q (m³/s)	0.252	0.011
Depth, d (m)	0.15	0.1
Longitudinal Slope	1.50%	1.50%
Side Slopes, z	3	3
Base Width, b (m)	1.50	1.50
Top width	2.40	2.10
Area (m²)	0.29	0.18
Wetted Perimeter (m)	2.45	2.13
Hydraulic Radius (m)	0.12	0.08
n	0.03	0.25
Q swale (m³/s)	0.288	0.017
Velocity (m/s)	0.98	0.09
Residence time (mins)	0.00	9.00
Length (m)		50
Total Length (m)		101
Freeboard for 100yr (m)	0.15	

Base width (m)	1.50
Total Height (m)	0.300

Top width (m)	3.30
Longitudinal slope (%)	1.50%
Side slope (H:V)	3

Design of swale 3

Assumptions:

Runoff Coefficient (c):

Roughness factor (k):

A21235 Waipu Gateway 8/09/2023 MB File Name Sheet Name Path Checked CKL Limited PO Box 99 463, Auckland 1149 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032 A21235-EV- -Swale Design-Swale 3

JR

c=0.95 for roof c=0.9 for driveway c=0.3 for permeable surafces k = 1.5 (conservative value for existing concrete & plastic pipes) See NZS4404 Table 4.2 for more details

Design rainfall:	100yr 10min +CC	187.0 mm/hr

Catchment Details

Total Catchment area (ha)	1.37
Total Catchment area (m2)	13700

	Impervious	Pervious
Surface area (m ²)	8494	5206
WQ intensity (mm/hr)	10	
100% AEP Rainfall (mm/hr)	187.0	0
С	0.95	0.3
$WQ Q_p (L/s)$ (Roads Runoff)	22.4	
100% AEP qP(L/s)	419.49	81.19
Total Flow	500.68	

100yrCC Swale

	100yrCC	WQV
Catchment area (m ²)	13,700	13,700
Q (m³/s)	0.501	0.022
Depth, d (m)	0.19	0.1
Longitudinal Slope	1.60%	1.60%
Side Slopes, z	3	3
Base Width, b (m)	2.00	2.00
Top width	3.14	2.60
Area (m²)	0.49	0.23
Wetted Perimeter (m)	3.20	2.63
Hydraulic Radius (m)	0.15	0.09
n	0.03	0.25
Q swale (m³/s)	0.584	0.023
Velocity (m/s)	1.20	0.10
Residence time (mins)	0.00	9.00
Length (m)		53
Total Length (m)		107
Freeboard for 100yr (m)	0.15	

Base width (m)	2.00
Total Height (m)	0.340

Top width (m)	4.04
Longitudinal slope (%)	1.60%
Side slope (H:V)	3

Design of swale 4

Assumptions:

Runoff Coefficient (c):

Roughness factor (k):

A21235 Waipu Gateway 8/09/2023 MB File Name Sheet Name Path Checked CKL Limited PO Box 99 463, Auckland 1149 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032 A21235-EV- -Swale Design-Swale 4

JR

c=0.95 for roof c=0.9 for driveway c=0.3 for permeable surafces k = 1.5 (conservative value for existing concrete & plastic pipes) See NZS4404 Table 4.2 for more details

Design rainfall:	100yr 10min +CC	187.0 mm/hr

Catchment Details

Total Catchment area (ha)	1.14
Total Catchment area (m2)	11400

	Impervious	Pervious
Surface area (m ²)	7068	4332
WQ intensity (mm/hr)	10)
100% AEP Rainfall (mm/hr)	187	.0
С	0.95	0.3
WQ Q _p (L/s) (Roads Runoff)	18.	7
100% AEP qP(L/s)	349.07	67.56
Total Flow	416.	63

100yrCC Swale

	100yrCC	WQV
Catchment area (m ²)	11,400	11,400
Q (m³/s)	0.417	0.019
Depth, d (m)	0.2	0.1
Longitudinal Slope	1.00%	1.00%
Side Slopes, z	3	3
Base Width, b (m)	2.00	2.00
Top width	3.20	2.60
Area (m²)	0.52	0.23
Wetted Perimeter (m)	3.26	2.63
Hydraulic Radius (m)	0.16	0.09
n	0.03	0.25
Q swale (m³/s)	0.506	0.018
Velocity (m/s)	0.97	0.08
Residence time (mins)	0.00	9.00
Length (m)		42
Total Length (m)		84
Freeboard for 100yr (m)	0.15	

Base width (m)	2.00
Total Height (m)	0.350

Top width (m)	4.10
Longitudinal slope (%)	1.0%
Side slope (H:V)	3

CKL Limited PO Box 99 463, Auckland 1149 L2, 25 Broadway, Newmarket Ph: 09 524 7029 Fax: 09 524 7032

 Job Name
 47 Millbrook Road, Waipu
 File Name
 A21235-EV--SMP2.xlsx

 Job No.
 A21235
 Sheet Name
 Upstream OLFP

 Date
 30/11/2021
 File Name
 CPorgramData\12DSynerg\data\CKL-AZU-SYN-1\Cl 1 - Engineering_19993\01 Engineering Design\Calculations\Stormwater & WW

 By
 CL
 Checked

Catchment Breakdowns and Peak Flow Calculation for Existing Pipe Network

Assumptions:			Colebro
Runoff Coefficient (c):	c=0.9	5 for roof	V = -2.
	c=0.9	for driveway	with Sr -
	c=0.3	for permeable surafces	V = orea
Roughness factor (k):	k = 0.	6 (conservative value for existing concrete & plastic pi	
	See N	ZS4404 Table 4.2 for more details	v = Kine web S ₁ = dep J ₂ = fricti
Design rainfall:	100yr 10min +CC	167 mm/hr	L = terg g = earth

Cole	brook-White Equation f	or Pipe Velocity
V -	$-2\sqrt{2g \cdot D \cdot S_f} \cdot \log\left(\frac{k_2}{3.70 \text{ D}}\right)$	$+\frac{2,51 u}{D\sqrt{2g'D'_{3f}}}$
with	$S_f = \frac{h_f}{L}$	
V =	mean velocity	[m/s]
D =	Hedraulic Diameter	[m]
61-	surface roughness	[col
v =	Kinematic viscosity water, 20°C= 1.00 · 10 ⁻⁶	[kg/ma]
5.=	slope of hydraulic gradient	11
by=	frictional head loss	[m]
1-	Length between the Head Loss	[m]
	earths gravity	(m/a ²)

Catchment Details

							Other Impervious			Peak Flow from
Catchment	Description	Area	% Impervious	Impervious Area	Pervious Area	Roof Area	Area	Pervious Area	Weighted c	Catchment (L/s)
A	Southern OLFP	136000	0.0%	0	136000.00	0.0%	0%	100%	0.30	1891.9
в	Eastern OLFP	104000	0.0%	0	104000.00	0.0%	0%	100%	0.30	1446.8

Table 4.2 - Guide to roughness coefficients for gravity stormwater pipes concentrically jointed and clean

Description	Colebrook-White coefficient k (mm)	Manning roughness coefficient (n)
Circular pipes		S
PVC	0.003 - 0.015	0.008 - 0.009
PE	0.003 - 0.015	0.008 - 0.009
Vitreous clay	0.15 - 0.6	0.010 - 0.013
Concrete - machine made to AS/NZS 4058	0.03 - 0.15	0.009 - 0.012
Corrugated metal	-	0.012 - 0.024
GRP (glass reinforced plastic)	0.003 - 0.015	0.008 - 0.009
Culverts		
Concrete pre-cast (pipes and boxes)	0.6	0.016
Open channel		
Straight uniform channel in earth and gravel in good condition	-	0.0225
Unlined channel in earth and gravel with some bends and in fair condition	-	0.025
Channel with rough stony bed or with weeds on earth bank and natural streams with clean straight banks	-	0.030
Winding natural streams with generally clean bed but with some pools and shoals	-	0.035
Winding natural streams with irregular cross section and some obstruction with vegetation and debris	-	0.045
Irregular natural stream with obstruction from vegetation and debris	-	0.060
Very weedy irregular winding stream obstructed with significant overgrown vegetation and debris		0.100

Client : [Company Name] Site address : [Site Address] Job name : [Job Name] Job number : [Job Number]

MANNINGS OPEN CHANNEL FLOW CALCULATION SHEET

MAININGS OF EN CHANNEL FLOW CALCOLATION SHELT			
	File Name	Southern OLFP	
	Sheet Name	A21235-EVSMP2.xlsx	
Date			
Ву	Checked		

Channel ID: XS 1 Channel Type: Trapezoidal

Input	Data:

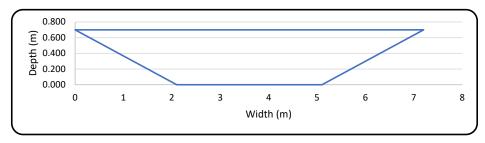
Channel Longitudinal Slope S =	0.07%	
Base width b =	3.000	m
Channel side slope Z =	3	H:1V
Design flow depth d =	0.700	m
Manning Material	Pasture, no brush high grass	
Manning number n =	0.03	

Calculated Parameters:

X-sectional Flow Area A =	3.570	m²	
Wetted Perimeter P =	7.4272	m	
Hydraulic radius R =	0.481	m	

Check Flow Rates:

Design Flow Rate Q _d =	1.892	m ³ /s	
Calculated Channel Capacity Q_c =	1.890	m³/s	Channel capacity less than design flow


Freeboard:

Proposed freeboard=	0.000	m

Final Channel Geometry:

Total depth =	0.700	m	
Base width =	3.000	m	
Top width =	7.200	m	

Channel Cross Section:

Client : [Company Name] Site address : [Site Address] Job name : [Job Name] Job number : [Job Number]

MANNINGS OPEN CHANNEL FLOW CALCULATION SHEET

MANNINGS OPEN CHANNEL FLOW CALCULATION SHEET			
	File Name	Western OLFP	
	Sheet Name	A21235-EVSMP2.xlsx	
Date			
Ву	Checked		

Channel ID: XS 1 Channel Type: Trapezoidal

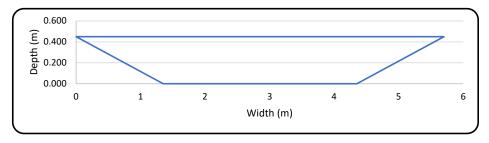
Input Data:		
Channel Longitudinal Slope S =	0.48%	
Base width b =	3.000	m
Channel side slope Z =	3	H:1V
Design flow depth d =	0.360	m
Manning Material	Pasture, no brush high grass	
Manning number n =	0.03	

Calculated Parameters:

X-sectional Flow Area A =	1.469	m²	
Wetted Perimeter P =	5.2768	m	
Hydraulic radius R =	0.278	m	

Check Flow Rates:

Design Flow Rate Q _d =	1.447	m ³ /s	
Calculated Channel Capacity Q_c =	1.452	m³/s	Channel size sufficient


Freeboard:

Proposed freeboard=	0.090	m

Final Channel Geometry:

Total depth =	0.450	m	
Base width =	3.000	m	
Top width =	5.700	m	

Channel Cross Section:

APPENDIX C

Geotech report

Preliminary Geotechnical Investigation for Proposed Service Centre at

47 Millbrook Road, Waipu

Rev A

28 November 2022 Rev. B

Job No. NL220045

Auckland

Northland

Wellington (04) 896 0675 Christchurch

www.soilandrock.co.nz

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR PROPOSED SERVICE CENTRE AT 47 MILLBROOK ROAD, WAIPU

Job Number:	NL220045
Name of Project:	47 Millbrook Road, Waipu
Client:	Vaco Investments (Waipu) Limited
Author	Ben Young, Senior Engineering Geologist, MEngNZ
Reviewer: / Authoriser:	Bruce Green, Principal Geotechnical Engineer, CMEngNZ, CPEng
Document Version:	Α
Printed:	28 November 2022
Author Signature:	
Reviewer: / Authoriser:	

COPYRIGHT:

The information presented in this document is the property of Soil & Rock Consultants. Use or copying of this document in whole or in part without the previous permission of Soil & Rock Consultants implies a breach of copyright.

Geotechnical

Environmental

Stormwater

Hydrogeology

Table of Contents

Report	Summary	3
1.0	Introduction	4
1.1	Limitations	4
2.0	Site Description	5
2.1	Proposed Development	6
3.0	Results of Ground Investigation	6
3.1	Geology	6
3.2	Field Investigation	8
3.3	Quality Assurance	8
3.4	Subsurface Conditions	9
3.5	Expansive Soils	10
3.6	Sensitive Soils	11
4.0	Assessment of Natural Hazards	11
4.1	Seismic Design Parameters	12
4.2	Qualitative Liquefaction Assessment	12
4.3	Qualitative Assessment of Static Settlement Risk	13
4.4	Acid Sulphate soils	13
5.0	Preliminary Recommendations	13
5.2	Floor Slab Discussion	15
5.3	Pavements	15
5.4	Subgrade Protection	16
5.5	Earthworks	16
5.6	Stormwater Disposal	17
5.7	Wastewater Disposal Areas	17
5.8	Underground Services	17
6.0	Purpose of Resource Consent	18
7.0	Further work	18
8.0	Construction Constraints	18
9.0	Observation of Construction	19
<u>Appen</u>	dices:	

Appendix A: Investigation Plan

Appendix B: Investigation Logs (Augerholes, Scala Penetrometer Results, Piezometers)

Appendix C: Laboratory Test Results

Report Summary

The following summarises the findings of this report however is not to be taken in isolation. It is a requirement that any user of this report review the document in its entirety, including all appendices.

Feature	Commentary
RMA: Section106	No <i>geotechnical</i> natural hazards were identified (as listed in thisAct) that are considered an undue impediment to development or that cannot be reasonably addressed by typical engineering design and construction
Unduly Weak, Sensitive, or Compressible Soils	Alluvial soils of variable strength (soft to dense) were found beneath the site. These soils are highly variable in strength and composition over short vertical and lateral distances. Geotechnical risks associated with these soils include lower bearing capacity, liquefaction, settlement under loads and shallow groundwater.
Groundwater	Encountered up to a maximum depth of 0.2 m bpgl.
Natural Soils	Firm to very stiff Tauranga Group soils
Foundations	Suitable foundation types will be confirmed following confirmation of settlement and liquefaction risks.
Expansive Soils	Classified as Extremely Expansive in accordance with B1/AS1
Seismic Site Class	Preliminary site class recommendation of Class C – 'Shallow Soil Site' (as defined by NZS 1170.5:2004) for preliminary design. This site classification should be confirmed by deeper testing (CPT).
Further Work Required	The extent of proposed development was extended to the south following our ground investigation. Additional investigation will be needed in this area during the detailed design (i.e. Building Consent) stage. Further work is recommended to validate and quantify the risk of settlement and liquefaction. Cone penetration testing (CPT) and detailed assessment using proprietary software is recommended. The results of that further work may impact on the preliminary recommendations contained in this report. Results from that CPT testing can also be applied to proprietary software that assesses the settlement potential of the soils. Specific assessment and design for individual structures will be needed at the detailed design stage. The scope of the assessment and design needed will be confirmed once detailed plans of the development are available.
Construction Constraints	 Construction constraints at the site are expected to include: Soils sensitive to disturbance Elevated groundwater levels Low strength soils

1.0 Introduction

Soil & Rock Consultants (S&RC) were engaged by Vaco Investments (Waipu) Limited to carry out a geotechnical investigation at 47 Millbrook Road, Waipu. Our investigation and assessment relates to the proposed development of the site which includes construction of a service centre.

Our investigation has been informed by Section 106 of the Resource Management Act which lists 'Natural Hazards' that must be considered by Council when assessing a Resource Consent application. Our assessment has also extended to consideration of the following:

- Assessment of the suitability of the site for supporting the proposed buildings and infrastructure.
- Qualitative assessment of the potential for liquefaction and settlement affecting the development.
- Laboratory testing to determine the potential for acid sulphate soils to have an effect on the development.
- Determining a groundwater model for the site.
- Preliminary recommendations for future building foundations and earthworks.
- Assessment of natural geotechnical hazards that could affect the site as outlined in Section 106 of the Resource Management Act.

The primary purpose of this reporting is to identify the issues discussed above and provide associated remedial, mitigating, and design recommendations in order that Resource Consent can be granted. Information and advice related to good construction practise are also provided.

1.1 Limitations

This report has been prepared by Soil & Rock Consultants for the sole benefit of Vaco Investments (Waipu) Limited (the client) with respect to 47 Millbrook Road, Waipu and the brief given to us. This report is also intended to be used by client-appointed consultants to support designs and by Council for the purpose of assessing a Resource Consent application for the building work described in this report. The data and/or opinions contained in this report may not be used in other contexts, for any other purpose or by any other party without our prior review and agreement. This report may only be read or transmitted in its entirety, including the appendices.

The recommendations given in this report are based on data obtained from discrete locations and soil conditions between locations are inferred only. Our geotechnical models are based on those actual and inferred conditions however variations between test locations may occur and Soil & Rock Consultants should be contacted in this event.

Soil & Rock Consultants should also be contacted should the scope or scale of the development proposal vary from that currently indicated.

2.0 Site Description

The subject site is located at the corner of Millbrook Road and State Highway 1 and is legally described as Part Lot 1 DP 44163. The site is irregular in shape (see Figure 1). The site and its neighbouring properties comprise rural farmland and are near level.

Figure 1: Site Plan (Source of background image: Northland Regional Council)

2.1 Proposed Development

Preliminary drawings provided to us¹ show the proposed development will include construction of:

- three stormwater disposal swales;
- five wastewater disposal areas;
- a petrol station which includes deep (approx. 4.5 m bpgl) buried fuel tanks, forecourt, truck stop and mechanics workshop;
- several buildings such as supermarkets and retail spaces;
- water storage tanks;
- parking and roadways over much of the site.

Figure 2: Proposed Development (Source: Site Plan by Technitrades Architecture)

The layout and details of the development are preliminary and subject to change.

3.0 Results of Ground Investigation

3.1 Geology

A geological map of the area² indicates that the site is underlain by Late Pleistocene River Deposits of the Tauranga group (refer to Figure 1). These materials generally comprise poorly consolidated mud, sand, gravel, and peat deposits of alluvial, swamp and estuarine origins.

¹ 'Proposed Service Centre' Drawing No. 3096-E01 revision P2 dated 20/10/2022 prepared by Technitrades Architecture.

² New Zealand Geology Web Map, <u>http://data.gns.cri.nz/geology</u>

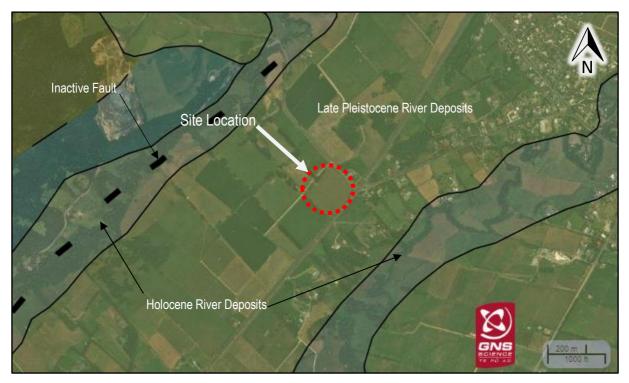


Figure 1 Geological Map (Source: GNS WebMaps Website)

Alluvial soils are inherently variable and can change in both strength and composition over short vertical and lateral distances.

Geotechnical risks associated with alluvial soils include:

- settlement
- liquefaction
- lower bearing capacities
- elevated groundwater levels

Preliminary assessment of geotechnical risks and methods to mitigate these are discussed further in this report.

3.2 Field Investigation

Our field investigation was carried out on 6th, 7th and 12th April 2022 and included the following:

- Visual appraisal of the site
- Drilling of ten (10) hand augerholes (AH01 AH10 inclusive)
- Retrieval and laboratory testing of five (5) soil expansivity samples (SS01 SS05)
- Installation of standpipe piezometers within 2 of the augerholes (PZ01 within AH09 and PZ02 with AH10).
- Carrying out ten shallow Scala penetrometer tests to 1.0 m to assess near surface conditions for pavement design (SC01 to SC10).
- Soil sampling for acid sulphate analysis (10 sample location with 4 samples per location)

The test locations are shown on the Site Plan, Drawing No NL220045/1 and NL220045/2 (Appendix A). Augerhole logs and the Scala test results are presented in Appendix B. Laboratory test results are presented in Appendix C. Our investigation has been limited to the northeastern half of the site. Following our investigation the extent of proposed development was extended to the south. This area will need additional investigation at the detailed design stage.

All testing was undertaken in accordance with relevant standards and guidelines.

3.3 Quality Assurance

Measurements of undrained shear strength were undertaken in the augerholes at intervals of depth using a handheld shear vane in accordance with the New Zealand Geotechnical Society Guidelines for Handheld Shear Vane Tests, dated August 2001. Peak and remoulded vane shear strengths shown on the attached augerhole logs represent dial readings off the shear vane adjusted using the BS 1377 calibration correction factor given on the log.

A visual-tactile field classification of the soils encountered during drilling was carried out in accordance with "Guidelines for the Field Classification and Description of Soil and Rock for Engineering Purposes", issued by the New Zealand Geotechnical Society Inc. (2005).

Dynamic Cone (Scala) Penetrometer testing was carried out from the base of each augerholes until refusal was reached. Refusal is defined as five consecutive blow counts of 10 or greater per 50mm penetration or a blow count of 20 for 50mm penetration. The results are given on the attached sheet (Appendix B).

3.4 Subsurface Conditions

Subsurface conditions have been interpolated between the test locations and localised variations between and away from the test locations will exist.

A thin layer of topsoil was found underlain by alluvial deposits of Tauranga Group soils. An outline of the soil conditions and investigation results is given below and summarised in Table 1. Detailed descriptions of the soils are given on the attached logs (Appendix B).

 Topsoil. Topsoil was encountered at each test location to depths between 0.1m and 0.3m below present ground level (bpgl). Topsoil is unsuitable for the support of permanent structures (i.e. building foundations, floor slabs, pavements etc.).

The depth, lateral extent, and composition of the topsoil will vary across the site.

 Tauranga Group. Puketoka Formation alluvial deposits were encountered at each test location underlying the topsoil to the termination depths of the augerholes. The alluvial soils were highly variable and comprised soft to very stiff silt and clay with occasional organic rich layers.

All augerholes were terminated before their target depth due to collapse of soil below the water table.

Vane shear strengths recorded within the alluvial material ranged between 26kPa to greater than 200kPa.

- Scala Penetrometer Testing. Scala Penetrometer testing was carried out from the base of each augerhole. Refusal was encountered at depths ranging between 3.8m and 6.5m bpgl. Refusal was generally due to a gradual increase in resistance and is inferred to be due to increased friction on the Scala rods. No defined hard or dense surface is inferred at the termination depth of the testing however such a layer may be present within a few metres of that termination.
- **Groundwater.** Groundwater measurements were carried out within the hand augerholes on the day of drilling and on three subsequent dates.

Groundwater measurements taken during drilling (summarised in Table 1) are not always an accurate portrayal of the actual long-term groundwater table as groundwater levels can rise within the augerhole following drilling. As a guide, we expect groundwater to develop at a stable level within augerholes at the depths where soils were logged as 'wet' or 'saturated'.

Groundwater levels measured within piezometers across subsequent visits are more representative of actual conditions. The results of the groundwater monitoring are summarised in Table 2.

Test ID	Termination Depth	Depth to the base of Topsoil/Fill	Vane Shear Strength Range (kPa)	Scala Penetrometer Termination	Groundwater Depth		
All depths measured in (m) below present ground level. (Rounded to 1 DP)							
AH01	3.4	0.2	33 – 200+	6.2	3.4		
AH02	3.9	0.1	55 - 133	6.2	3.0		
AH03	3.5	0.1	59 – 200+	5.9	1.3		
AH04	3.2	0.3	29 - 173	6.3	0.6		
AH05	3.2	0.1	37 - 99	6.5	2.2		
AH06	4.0	0.3	54 – 200+	6.5	2.0		
AH07	3.5	0.1	37 – 200+	5.7	2.2		
AH08	2.3	0.1	39 - 68	3.8	0.7		
AH09	3.7	0.3	26 – 200+	6.3	0.6		
AH10	3.0	0.1	35 - 122	4.7	2.9		

 Table 1 – Summary of Subsurface Conditions

 Table 2 – Summary of groundwater monitoring results

Test ID	Termination Depth	Groundwater Depth					
All dep	All depths measured in (m) below present ground level. (Rounded to 1 DP)						
		8/04/2022 (Day 1)	14/04/2022 (Day 7)	20/04/2022 (Day 13)			
PZ01	3.7	0.6	0.5	0.2			
PZ02	3.0	2.9	0.8	0.4			

3.5 Expansive Soils

Five soil samples (SS01 – SS05) were retrieved from near-surface strata and tested in our laboratory to determine soil expansivity characteristics in accordance with AS 1289.7.1.1.

The laboratory test results indicate the soils ranged between expansive soil Class H to Class E being 'highly expansive' to 'extremely expansive' as given in B1/AS1.

We recommend that Class H soil expansivity is assumed for design purposes. B1/AS1 states that Class E soils experience surface movements of up to 90 mm and foundation design should take account of this classification. Laboratory test results are presented in Appendix C.

3.6 Sensitive Soils

The ratio of peak to remoulded vane shear strength values recorded during our investigation ranges approximately between 2 and 8, indicative of a 'normal to sensitive' subgrade. These soils are potentially susceptible to mechanical disturbance and/or exposure to the elements.

Soils that test well in-situ can perform poorly when construction is underway. Care is therefore required during construction to ensure the soils are protected to ensure favourable short and long-term subgrade and foundation performance.

4.0 Assessment of Natural Hazards

Section 106 of the Resource Management Act (RMA) requires consenting authorities to consider the possible risks various natural hazards pose to site where development is planned. The following points identify potential natural *geotechnical* hazards ss identified in the RMA. The likelihood of each of these hazards affecting the property is summarised in the following points.

- Earthquake (seismic loading and liquefaction). The PGA for the site is discussed in Section 4.1 below. Refer to section 0 for our assessment of the risk of liquefaction. Design of foundations and structures should include an allowance for the design PGA.
- **Tsunami.** The site is shown to be located with the 'Safe Area' for Tsunami Evacuation Zones as shown on Northland Regional Councils Hazard maps³.
- **Erosion.** The site is not located nearby any sources of erosion such as watercourses or overland flow paths. The site is not at risk of being affected by erosion.
- Volcanic and geothermal activity. The site is not located near any known volcanic vents. The site is not subject to any unusual risk of volcanic or geothermal activity.
- Landslip. The site is nearly level. Landslip / slope failure is not a risk at the site.
- **Subsidence.** The risk of subsidence (or settlement) is discussed in section 4.3 below.
- **Sedimentation.** There is no risk of the site being affected by sedimentation.

³ <u>https://www.nrc.govt.nz/environment/river-flooding-and-coastal-hazards/natural-hazard-map-portal/</u>

• **Flooding.** The site is shown to be outside of the coastal inundation and river flood zones shown on Northland Regional Councils Hazard maps.

Some natural hazards with a geotechnical basis have been identified as possibly affecting the site. Provided that allowance is made for these in the detailed design phase then the risk to structures built on the site, from natural hazards with a geotechnical basis, is low.

4.1 Seismic Design Parameters

Based on our preliminary investigation we recommend a preliminary site class of Class C – 'Shallow Soil Site' (as defined by NZS 1170.5:2004) is adopted for preliminary design. This site classification should be confirmed by deeper testing (CPT).

We have calculated the Peak Ground Acceleration (PGA) in accordance with Section 6.2 of the Bridge Manual based on the following assumptions:

- Class C soils
- A design life of 50 years
- An ARI of 1/500 (Table 3.3 of 1170.0: 2002)
- Ru of 1 (Table 3.5 of 1170.5: 2004)
- F = 1.33 (Section 6.2 of the Bridge Manual)
- C0,1000 = 0.13 (Figure 6.1(a) of the Bridge Manual)

A PGA value of 0.13g (ULS) with an effective earthquake magnitude of 5.6 (from Figure 6.2(d) of the Bridge Manual) should be adopted for design purposes for structures with a 50-year design life and an importance level of 2.

A different PGA will need to be calculated for structures with different importance levels / design life requirements or for liquefaction screening assessments.

4.2 Qualitative Liquefaction Assessment

Liquefaction is a process in which loose, saturated, cohesionless soils are subject to temporary, but essentially full, loss of strength due to incremental pore pressure build-up under reverse cyclic shear loading generated during an earthquake. As a consequence of this temporary strength loss, the liquefied soil can deform and settle. Case histories show that liquefaction is limited almost exclusively to saturated, fine to medium grained sands and low plasticity silts.

Liquefaction can only occur at and below the surface of the groundwater.

The site is underlain by weaker alluvial soils with shallow groundwater levels. Due to the presence of high groundwater and the presence of liquefiable material (sands/ silty sands) liquefaction is possible.

We recommend further testing and detailed assessment to validate and quantify the potential for liquefaction to affect structures at the site. This will also allow for preliminary recommendations for earthquake-resistant foundation designs to be developed.

4.3 Qualitative Assessment of Static Settlement Risk

Weaker alluvial soils underly the site. These soils are prone to settlement under imposed loads (e.g. new building loads or fill being placed above the existing ground level). Specific assessment of the risk of settlement affecting structures should be carried out to quantify the settlement risk and to discuss design options to mitigate that risk if it is identified.

Options to mitigate the risk of settlement typically include over-sizing of foundations to reduce loads applied to the underlying soils or application of load to the soil before construction and monitoring to confirm settlement has been fully realised ('preloading').

4.4 Acid Sulphate soils

Acid sulphate soils are present across much of Northland and have the potential to corrode buried metal structures and degrade concrete unless each has protective coatings or additives. We have carried out sampling and testing to assess the risk of acid sulphate soils affecting structures at the site. The results of our sampling and assessment are reported on separately.

5.0 Preliminary Recommendations

There are potentially significant constraints on development, being:

- Shallow groundwater
- Weak soils:
 - o Soil strengths vary markedly across the site.
 - o A reduced Bearing Capacity must be adopted in design
 - o The soils are prone to settlement under building loads
- Potentially liquefiable soil column
- Site Class 'E' soil expansivity

The extent of those constraints has yet to be determined as further investigation and analysis related to the liquefiable and settlement characteristics are required.

Preliminary foundation recommendations for the proposed development are outlined in the following sections.

5.1.1 Shallow Foundation Discussion

The natural site soils are likely to be suitable for the use of shallow foundations to support lightweight structures. Shallow foundations are likely to take the form of a 'waffle' or 'rib-raft' slab (surface-supported, no embedment) however traditional strip/pad/Senton footings embedded appropriately designed/embedded to address the soil expansivity class may be suitable depending of the findings of further investigation and 'actual' building designs.

Design of shallow foundations will need to incorporate assessment of:

- Suitable bearing capacities. Recommendations for lower bearing capacities (in the range of 200 kPa Geotechnical ultimate bearing capacity) should be expected to allow for weaker soils within the zone of influence of shallow foundations.
- Total and differential settlements (discussed in section 4.3)
- Liquefaction risks (discussed in section 4.2)
- Class E soil expansivity

It is likely that ground improvement, taking the form of a geogrid-reinforced 'raft' will be required. This type of ground improvement addresses settlement and liquefaction issues and can also act to reduce soil expansivity by at least one class (e.g. from Class E down to Class H)

5.1.2 Pile Foundation Discussion

Pile foundations are likely to be required:

- For the bridging of underground services (not expected)
- Where bearing capacity requirements are greater than those given for shallow foundations
- Where ground improvement alone is insufficient to provide a reliable subgrade

Pile excavations will be susceptible to collapse and casing is likely to be required. Pumps capable of handling slurry-rich material will also be required during construction

Pile design requirements will need to be confirmed following specific investigation and assessment at the detailed design stage.

5.2 Floor Slab Discussion

High groundwater levels were encountered during our investigation. Engineering assessment and design will be needed to ensure that suitable separation between maximum groundwater levels and the underside of floorslabs is maintained. Options include one or several of the following:

- using physical separation barriers (e.g. suitably specified damp proof membrane)
- elevating finished floor levels such that a suitable separation is obtained between groundwater and the underside of floorslabs
- including subsoil drains below floorslabs. This will be effective only where the same are elevated.
 If building platforms are not elevated there may be insufficient separation between the subplatform drains and the groundwater table to achieve effective drainage.

All topsoil, non-engineered fill, vegetation, organic or otherwise unsuitable material should be removed from under floor slab areas prior to construction.

5.3 Pavements

All topsoil, non-engineered fill, vegetation, organic or otherwise unsuitable material should be removed from pavement areas prior to construction.

For preliminary design a CBR value of 3% or a modulus of subgrade reaction of 20kPa/mm are considered appropriate for flexible and rigid pavements respectively. These values should be confirmed by specific testing by S&RC following preparation of the subgrade.

Shallow groundwater may be an issue when preparing the subgrade for the placement of sub-base materials and sumps and pumps may be required. We recommend placement of a mudstop grade of textile as a separation layer between the natural subgrade and any fill or sub-base.

Design for low CBR may require excavate-and-replace of natural subgrade with granular fill and placement of geogrid in the sub-base and base courses, in addition to the mudstop separation fabric referenced above.

5.4 Subgrade Protection

Protection of a prepared subgrade is recommended.

Practical means of protecting the soils include avoidance of vibration-based compaction equipment, protecting the subgrade following initial site clearance, minimising the passage of heavy or vibrating construction plant, and extra care during foundation excavations, particularly any pile excavations.

Maintaining the natural moisture content of a subgrade prior to construction is important. The subgrade should be protected from desiccation, rain damage, and plant-trafficking by placing a protective layer of granular fill immediately upon excavating or filling to grade following inspection by the Geotechnical Engineer. The granular fill can later be left in-situ as a construction sub-base or basecourse if managed well and protected from damage. In dry conditions, we recommend watering the subgrade approximately 48 hours prior to concrete placement to return the subgrade to its inferred pre-excavation moisture content.

Any concrete floor-slab or pavement should be underlain by a basecourse of clean, free-draining granular fill as specified by the designer and should be subjected to compaction by a device of appropriate weight and energy. Silty or sandy subgrades are generally sensitive to disturbance and 'static' rolling only (no vibration) is recommended.

5.5 Earthworks

The site is generally near level and major earthworks are not expected in relation to the development. Where earthworks are required the following procedures should be observed:

- Settlement risks associated with filling above settlement-prone soils should be considered in the earthworks design. Typical methods for mitigating settlement effects include preloading using temporary stockpiled fill.
- The contractors construction methodology should allow for excavation below the water table for any excavations.
- Prior to commencing earthworks, a sediment control system must be constructed to ensure the Territorial and Regional Authority requirements are met.
- Unsuitable materials (topsoil, unsuitable soils) encountered should be excavated, removed and replaced with good quality granular fill compacted in layers no greater than 150mm (loose, prior to compaction).

- Any springs or seepage of water observed at ground level or intercepted by stripping operations should be captured in a suitable sealed pipe and taken via the shortest route to a safe discharge point as per the Geotechnical Engineer's advice.
- Service trenches should be backfilled with engineered granular fill where this is deemed necessary e.g. under pavements and other permanent structures.
- All fills, regardless of depth, must be placed in accordance with NZS 4431:1989 with respect to subgrade preparation and standard of compaction.
- A Geotechnical Engineer should inspect the prepared subgrade prior to placement of fill and test the fill compaction during placement.

5.6 Stormwater Disposal

Stormwater disposal systems should be designed to collect all runoff from sealed areas, building roofs and water tank overflows and dispose of it in a controlled manner. Design of the stormwater disposal system will be carried out by others.

5.7 Wastewater Disposal Areas

Design of the wastewater disposal system(s) must account for near-surface groundwater levels. Design of the wastewater disposal system will be carried out by others.

5.8 Underground Services

5.8.1 **Proposed Services**

High groundwater levels were measured during groundwater monitoring at the site. Groundwater should be assumed to be at the ground surface for design purposes.

Design of buried services (including service lines, pipes, storage tanks etc) must consider buoyancy effects as well as the potential for damage from Acid Sulphate soils. The risk of damage from Acid Sulphate soils is reported on separately.

5.8.2 Existing Services

Based on our service checks completed during preparation for our fieldwork public service lines are not present at the site. Regardless a thorough service search should be carried out prior to the commencement of excavations.

6.0 Purpose of Resource Consent

This report has been prepared to support a Resource Consent (RC) application. It does not represent a full design report that would accompany a Building Consent (BC) application.

The purpose of the RC is to identify potential issues and determine whether or not they are addressable by engineered design - it is not necessary to provide that fully developed design as that is part of the Building Consent process; and that process would accommodate any Conditions imposed by the RC.

7.0 Further work

Further work is recommended to better refine the risks of consolidation settlement and liquefaction.

Cone penetration testing (CPT) and detailed assessment using proprietary software is recommended as the most efficient and cost-effective means of achieving this aim. The results of that further work may impact on the preliminary recommendations contained in this report.

Deeper CPT testing should be undertaken to confirm the preliminary seismic site class assumed in this report and provide data that would show if pile designs are feasible.

Specific assessment and design for individual structures will be needed at the detailed design (i.e. Building Consent) stage. The scope of the assessment and design needed will be confirmed once detailed plans of the development are available.

8.0 Construction Constraints

Geotechnical aspects of construction that are anticipated to require special attention by the Contractor and inspecting Geotechnical Engineer include (but are not necessarily limited to) the following:

- Sensitive soils are present across the site which exhibit a significant strength reduction when disturbed or exposed to the weather. Care is therefore required to protect the exposed soils during construction.
- A shallow groundwater level is present. Any excavations will need to take this into account.

9.0 Observation of Construction

The recommendations given in this report are based on limited site data from discrete locations and it is in the nature of geotechnical engineering that variations in ground conditions will exist across a site. S&RC should be engaged to inspect excavations and foundation conditions exposed during construction so that 'actual' ground conditions can be compared with those assumed in formulating this report.

The aspects of the development that require geotechnical observation, testing, and final certification will be determined by Council and given in the Special Conditions of the Consent. The Contractor should make themselves familiar with those conditions and ensure adequate observations are carried out. In any case, the contractor should notify S&RC should ground conditions encountered during construction vary from those described in this report.

Any ground covered by fill or concrete prior to geotechnical inspection will be specifically excluded from completion certification (PS4).

End of Report Text – Appendices Follow

Appendix A

Investigation Plans

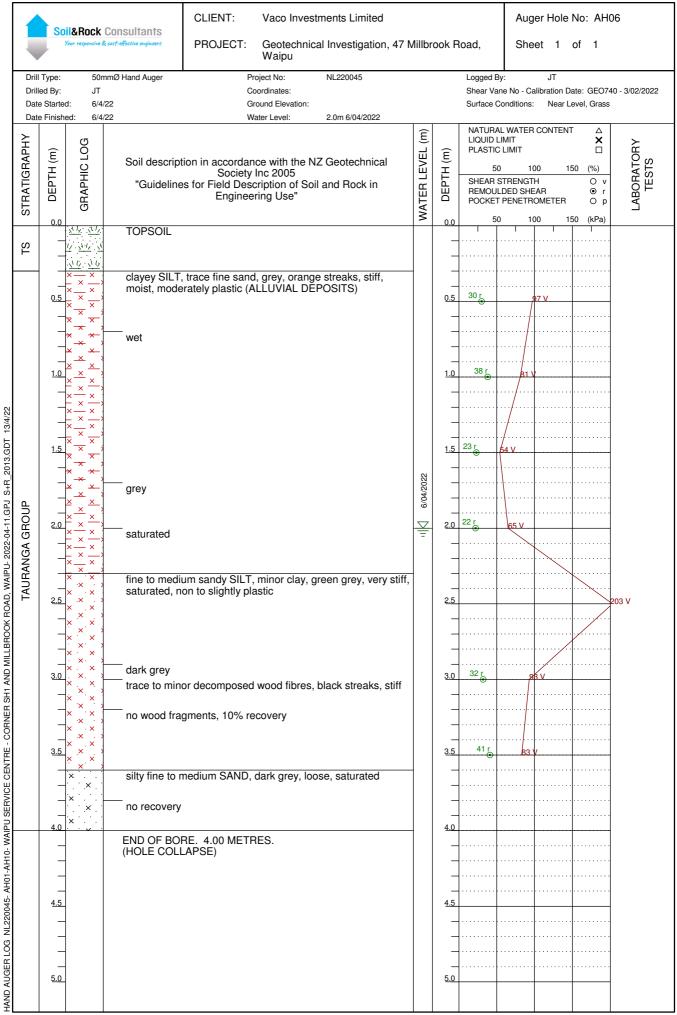
				Aerial Pho	oto from Auckland Council GeoMaps Webservice
	DRAWING NO:	NL220045 /1		Key:	
Soil&Rock Consultants	DATE:	June 2022	SITE PLAN	🔶 АН	S&RC Hand Augerhole Locations 06 Apr 2022
Your responsive & cost-effective engineers	DRAWN:	NB	47 MILLBROOK ROAD, WAIPU	O SS	S&RC Expansivity Sample Locations 06 Apr 2022
	SCALE:	NTS		🔶 PZ	S&RC Piezometer Locations 06 Apr 2022

				Aerial Pho	to from Auckland Council GeoMaps Webservice
Opile Dook Conquitante	DRAWING NO:	NL220045 /2		Key:	
Soil&Rock Consultants	DATE:	June 2022	SITE PLAN	🔶 sc	S&RC Scala Test Locations 06 Apr 2022
Your responsive & cost-effective engineers	DRAWN:	B.Young	47 MILLBROOK ROAD, WAIPU		
	SCALE:	NTS			

Appendix B

Investigation Logs (Augerholes, Scala Penetrometer Results and Piezometers)

			0	
	RH d: 6/4/	22	Project No: NL220045 Logged By: RH Coordinates: Shear Vane No - Calibration Date: C	
DEPTH (m)	GRAPHIC LOG	-	ion in accordance with the NZ Geotechnical Society Inc 2005 the for Field Description of Soil and Rock in Engineering Use"	LABOR
0.0	$\frac{\sqrt{1}}{2}$ $\frac{\sqrt{1}}{2}$	TOPSOIL		ra)
1 -	// <u>// //</u> × × × ×	SILT, some	clay, minor fine sand, grey brown, stiff, moist,	
 0.5 <u>1.0</u>	<pre>x x x x x x x x x x </pre>	SILT, some orange strea moderately clayey, trace mottles, mo	clay to clayey, minor fine sand, light grey, aks, black mottles, very stiff, moist, slightly to plastic e fine sand, white grey, orange streaks, no derately plastic	· · · · · · · · · · · · · · · · · · ·
		streaks, stiff moist to wet	, moist, highly plastic	· · · · · · · · · · · · · · · · · · ·
		orange, whi slightly to m SILT, some blue, very st fine to medi trace clay, g silty fine to r saturated	te grey, orange streaks, very stiff, moist to wet, oderately plastic fine to medium sand to sandy, some clay, light iff, moist to wet, slightly plastic um sandy SILT, minor clay, non to slightly plastic reenish light blue, hard, non plastic nedium sand, light blue, medium dense, wet	 200+ UTP V
		END OF BO	RE. 3.40 METRES.	
1	II Type: Illed By: te Starte te Finish (E) HLdg 0.0 0.0 	II Type: 50n Iled By: RH te Started: 6/4/ (III) BOO (III) BOO (III) BOO (III) BOO (III) SOO (III) BOO (III) BOO (III) BOO (III) BOO (III) BOO (IIII) BOO (IIII) BOO (IIII) BOO (IIII) BOO (IIII) BOO (IIIII) BOO (IIIII) BOO (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Iled By: RH te Started: 6/4/22 te Finished: 6/4/22 Image: Construction of the started of the start	Solution PROJECT: Geotechnical Investigation, 47 Millbrook Road. Sheet 1 of Market Intro Some Hand Auge Provide New No. Ni20040 Bin Bank Multiple Intro Some Hand Auge Provide New No. Ni20040 Bin Bank Multiple Intro Difference Difference Auge No. Ni20040 Bin Bank Multiple Intro Difference Difference Auge No. Ni20040 Bin Bank Multiple Intro Difference Difference Auge No. Ni20040 Bin Bank Multiple Intro Solid description in accordance with the NZ Geotechnical Solid Solid Concentrants Solid Solid Concentrants Difference Difference


131 Lincoln Road, Henderson. Phone: 09 8351740 www.soilandrock.co.nz

Soil&Rock Consultants Your responsive & cert-effective engineers CLIENT: Vaco Investments Limited PROJECT: Geotechnical Investigation, 47 N Waipu							Road,	Auger Hole No: AH02 Sheet 1 of 1			
Drille Date	Type: ed By: Started Finishe	JT d: 6/4/2		Project No: NL220045 Coordinates: Ground Elevation: Water Level: 3.0m 6/04/2022			Logged By Shear Van Surface Co	ne No - Calibration I	Date: GEO74(Level, Grass	0 - 3/02/2022	
STRATIGRAPHY	o DEPTH (m)	GRAPHIC LOG		ription in accordance with the NZ Geotechnical Society Inc 2005 ines for Field Description of Soil and Rock in Engineering Use"				TRENGTH DED SHEAR PENETROMETER	IT △ ★ □ 150 (%) ○ v ⊙ r ○ p 150 (kPa)	LABC	
TAURANGA GROUP			wet trace wood grey, orang no wood fra wery stiff some fine to wet to satur fine to medi to saturated dark grey minor decor 10% recover	and b medium sand, no orange streaks rated um sandy SILT, some clay, green grey, stiff, we d, slightly plastic mposed wood fragments, trace clay, non plastic erry medium SAND, trace clay, trace decomposed tents to 2mmØ, loose, saturated r RE. 3.85 METRES.	<u> </u>	-		58 V 65 V 55 V 55 V 116 V			

Soil&Rock Consultants Your respondive & cett-effective engineers CLIENT: Vaco Investments Limited PROJECT: Geotechnical Investigation, 47 I Waipu							Road,	Auger Hole No: AH03 Sheet 1 of 1			
Drill Date	Type: ed By: e Started Finishe	JT d: 6/4/2		Project No: NL220045 Coordinates: Ground Elevation: Water Level: 1.3m 6/04/2022			Logged By Shear Van Surface Co	ne No - Calibr	JT ation Date: GEO74 Near Level, Grass		
STRATIGRAPHY	DEPTH (m)	GRAPHIC LOG	-	ion in accordance with the NZ Geotechnical Society Inc 2005 is for Field Description of Soil and Rock in Engineering Use"	DEPTH (m)	LIQUID LI PLASTIC 50 SHEAR S REMOUL POCKET	LIMIT 100 TRENGTH DED SHEAR PENETROMI	LABORATORY TESTS			
TAURANGA GROUP TS	0.0 0.0 - - 0.5 - - - - - - - - - - - - -		streaks, stiff DEPOSITS) trace to min wet saturated SILT, some stiff, saturated green grey fine to medi saturated, s trace to min hard silty fine to r saturated 10% recover	and clay, some fine sand, grey, orange streaks, very ed, slightly plastic um sandy SILT, some clay, green grey, very stiff, lightly plastic or clay, non plastic nedium SAND, green grey, medium dense, ry RE. 3.50 METRES.				100 84 V 52 V 70 V 70 V 53 V 59 V		200+ UTP V	

Type: 50n led By: RH e Started: 6/4/ e Finished: 6/4/ (III) DOI DIH DIH QU Started: 0.0 Started: Visition: Started: 0.0 Started: Visition: Started: 0.0 Started: Visition: Started: Visition: Started: Visition: Started: Visition: Started: 0.0 Started: 0.0 Started: Visition: Started: 0.0 Started: 0.0 Started: Visition: Started: Visition: Started: Visition: Started: Visition: Started: 0.0 Started: 0.0 Started: 0.0 Started: 0.0 Started: 0.0 Started: <	V22 Soil descript "Guideline TOPSOIL	Proje Coor Grou Wate ion in accordance Society In s for Field Descri	e with the NZ c 2005 ption of Soil		1	WATER LEVEL (m)	EPTH (m)	Surface	AL WATEF	: Near L	evel, Grass.	9 - 10/03/2021
x x x x x x x x x x x x x x x x x x x	Soil descript "Guideline TOPSOIL	ion in accordance Society In s for Field Descri	e with the NZ c 2005 ption of Soil	Z Geotechnica	I	(EL (m)	(F	LIQUID	LIMIT	CONTEN	×	~
$\begin{array}{c c} \hline \underline{M} \underline{b} & \underline{M} \underline{b} \\ \underline{M} \underline{b} & \underline{M} \underline{b} \\ \underline{M} \underline{b} & \underline{M} \underline{b} \\ \underline{M} \underline{b} \underline{M} \underline{b} \\ \underline{M} \underline{b} \underline{M} \underline{b} \\ \underline{M} \underline{M} \underline{b} \underline{M} \underline{b} \\ \underline{M} \underline{M} \underline{M} \underline{M} \underline{M} \underline{M} \underline{M} \underline{M}$				Water Level: 0.6m 6/04/2022 Soil description in accordance with the NZ Geotechnical Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use"					limit 🗙			LABORATORY TESTS
0.5 × × ×						022	0.0	·····				
x x <td>stiff, moist, r trace fine sa minor decon stained brow firm silty CLAY, t speckles, sti no fine sand firm firm fine to medit occasional c slightly plast light blue, gr for 50mm; S clay, organic non to slight less then 5% END OF BOF</td> <td>and ILT, some fine to c stained dark broc lum sandy SILT, n brange streaks, ver ic ic ic ic ic is tained dark broc ly plastic ic recovery RE. 3.20 METRE</td> <td>ALLUVIAL (ALLUVIAL ss, no fine sa arated hite grey, ye hite grey, ye hite grey, ye hite grey, ye stiff, satu say stiff, satu medium say wn and grey</td> <td>DEPOSITS) and, organic illow white, bla hite grey, irated, non to</td> <td>ck</td> <td>-1 Stat222</td> <td> </td> <td>22 r</td> <td>V 63 ∨ 63 ∨</td> <td></td> <td>47 V 173 V</td> <td></td>	stiff, moist, r trace fine sa minor decon stained brow firm silty CLAY, t speckles, sti no fine sand firm firm fine to medit occasional c slightly plast light blue, gr for 50mm; S clay, organic non to slight less then 5% END OF BOF	and ILT, some fine to c stained dark broc lum sandy SILT, n brange streaks, ver ic ic ic ic ic is tained dark broc ly plastic ic recovery RE. 3.20 METRE	ALLUVIAL (ALLUVIAL ss, no fine sa arated hite grey, ye hite grey, ye hite grey, ye hite grey, ye stiff, satu say stiff, satu medium say wn and grey	DEPOSITS) and, organic illow white, bla hite grey, irated, non to	ck	-1 Stat222	 	22 r	V 63 ∨ 63 ∨		47 V 173 V	
			-				3.5 	· · · · · · · · · · · · · · · · · · ·				
 4.5 							 4.5 	· · · · · · · · · · · · · · · · · · ·				
	2.0 × × × × × × × × × × × × × × × × × × ×	speckles, sti no fine sand strain strain strain speckles, sti no fine sand strain sight strain sight slight	speckles, stiff, saturated, high no fine sand firm seckles, stiff, saturated, high no fine sand seckles, stiff, saturated, high firm seckles, stiff, saturated, high seckles, saturated, high seckles, saturated, high seckles, saturated, high seckles, saturated, high seckles, high seckles, high seckles, high seckles, high seckles, high sec	speckles, stiff, saturated, highly plastic no fine sand firm inor fine sand is in the to medium sandy SILT, minor clay, we occasional orange streaks, very stiff, satus slightly plastic light blue, greenish blue ight blue, greenish blue is in to slightly plastic less then 5% recovery END OF BORE. 3.20 METRES. (HOLE COLLAPSE)	speckles, stiff, saturated, highly plastic no fine sand firm a x x a x x x a x x a x x x x	<pre>no fine sand is view of the image streaks, very stiff, saturated, non to slightly plastic view view view of the image streaks, very stiff, saturated, non to slightly plastic view view view view view view view view</pre>	speckles, stiff, saturated, highly plastic no fine sand firm minor fine sand fire to medium sandy SILT, minor clay, white grey, occasional orange streaks, very stiff, saturated, non to slightly plastic light blue, greenish blue for 50mm; SILT, some fine to medium sand to sandy, minor clay, organic stained dark brown and greyish brown, stiff, non to slightly plastic less then 5% recovery END OF BORE: 3.20 METRES. (HOLE COLLAPSE)	speckles, stiff, saturated, highly plastic no fine sand firm 15 15 15 15 15 15 15 15 15 15	speckles, stiff, saturated, highly plastic no fine sand firm a a a a a a a a a a a a a	speckles, stiff, saturated, highly plastic no fine sand firm a a a a a a a a a a a a a	speckles, stiff, saturated, highly plastic no fine sand firm aa aa aa aa aa aa aa aa aa	speckles, stiff, saturated, highly plastic no fine sand firm firm firm firm fine to medium sandy SILT, minor clay, white grey, occasional orange streaks, very stiff, saturated, non to slightly plastic light blue, greenish blue for 50mm: SILT, some fine to medium sand to sandy, minor clay, organic stained dark brown and greyish brown, stiff, non to slightly plastic less then 5% recovery END OF BORE. 3.20 METRES. (HOLE COLLAPSE) S.

		il 8 Dock	Consultants	CLIENT:	Vaco Invest	tments Limited				Aug	er Hole	No: AHC)5
			Consumants & cost-effective engineers	PROJECT:	Geotechnic Waipu	al Investigation, 47 I	Millbr	ook F	load,	She	et 1	of 1	
Dri Da	ll Type: lled By: te Starte te Finish	RH d: 6/4	/22	Coc Gro	ject No: ordinates: ound Elevation: ter Level:	NL220045 2.2m 6/04/2022			Surface (ne No - Ca Conditions:	Near L	evel, Grass.	9 - 10/03/2021
STRATIGRAPHY	o DEPTH (m)	GRAPHIC LOG		ion in accordanc Society li s for Field Desci Engineeri	nc 2005 ription of Soi		WATER LEVEL (m)	o DEPTH (m)	LIQUID I PLASTIC 50 SHEAR REMOU	C LIMIT	00 1 H AR OMETER	T △ × □ 50 (%) ⊙ v ⊙ r ○ p 50 (kPa)	LABORATORY TESTS
TS		× ×		fine sand minor	clay vellowi	ish white streaks,						·····	
- CORNER SH1 AND MILLBROOK ROAD, WAIPU- 2022-04-11.GPJ S+R_2013.GDT 13/4/22 TAURANGA GROUP		· · · · · · · · · · · · · · · · · · ·	stiff, moist, r clayey SILT, moderately j silty CLAY, t streaks, stiff wet moist wet to satura minor fine sa saturated SILT, some blue, greenii fine to mediu	ated clay to clayey, so sho lue, stiff, saturated, sl fine to medium s sh blue, stiff, saturated, sl fine to slightly plater fine to slightly plater to slightly plater	astic (ALLUV orange stree white, occasi astic	IAL DEPOSITS) aks, stiff, moist, onal orange nedium sand, bluish derately plastic y, some clay, light tly plastic			3 r 29 r 32 r 32 r 4 r 87 24 r 4 r 4 r 87 87 87 87 87 87 87 87 87 87	65 V 68 V 72 V			
HAND AUGER LOG NL220045- AH01-AH10- WAIPU SERVICE CENTRE - CORNER (RE. 3.20 METRI	ES.								

	► Sr	il&Bock	Consultants	CLIENT: Vaco Investments Limited					Aug	er Hole	No: AH	07
			cost-effective engineers	PROJECT: Geotechnical Investigation, 4 Waipu	I7 Mil	llbro	ook F	load,	She	et 1	of 1	
Dr Da	ill Type: illed By: ate Starte ate Finish	RH d: 7/4/		Project No: NL220045 Coordinates: Ground Elevation: Water Level: 2.2m 7/04/2022				Surface Co	ie No - Ca onditions:	Near I	_evel, Grass	19 - 10/03/2021
STRATIGRAPHY	o DEPTH (m)	GRAPHIC LOG	"Guideline	tion in accordance with the NZ Geotechnical Society Inc 2005 es for Field Description of Soil and Rock in Engineering Use"		WATER LEVEL (m)	o DEPTH (m)	NATURAL LIQUID LI PLASTIC 50 SHEAR S REMOULI POCKET 50	MIT LIMIT 1(TRENGT DED SHE PENETR	00 1 TH EAR OMETER	T △ ★ □ 50 (%) 0 v 0 r 0 p 50 (kPa)	LABORATORY TESTS
TS		× ×	TOPSOIL	SILT, minor clay, yellowish white, stiff, moist, n	20							
	0.5	× × × × × × × × × × × × × × × × × × ×	to slightly pl	astic (ALLUVIAL DEPOSITS)			 0.5	22 r				
	-	× × × ×		slightly plastic , trace fine sand, white grey, orange streaks,			_					
	-	×	stiff, moist, r	moderately plastic			_					
		×; ×;	silty CLAY, v	white grey, occasional orange streaks, stiff,	_		_	30 r_				
	<u>1.0</u>	×	moist, highly	y plastic nposed tree fibres to 5mmØ, dark reddish			<u>1.0</u>		63.V			
/22	-	^^ 	brown, blacl	k speckles,			_					
T 13/4/22		× × · · · ·	firms to obliff				_					
13.GD	<u>1.5</u>	~ ×	firm to stiff				<u>1.5</u>	¹⁶ r 45	V		+	
WAIPU- 2022-04-11.GPJ S+R_2013.GDT TAURANGA GROUP	_	×	wet				_					
SPJ S	-	 ×				22	_					
URA	<u>2.0</u>	×	 firm, saturat	red		7/04/2022	<u>2.0</u> 1	¢r	· · · · · · · · · · · · · · · · · · ·			
2022-(TA		- *- + *- *- 7	iiiii, oatarat		~	$\overline{\nabla}$	_	\ <i> </i> -				
AIPU-	-	*			-	Ξ	_	·····				
		- * · · · · · · · · · · · · · · · · · ·					 2.5	29 r	63 V			
OK RC	-	* *					_					
LBRO		× × ×	Cara ta maral'				_	········				
NIL MIL		\hat{x}		um sandy SILT, minor clay, bluish white, hard on to slightly plastic			<u></u>					200+ UTP V
SH1 AN		×					<u>0.0</u>					200+015 V
INER 0	-						-					
- COF		× × × × × ×	silty fine to r	nedium SAND, bluish light grey, organic stain	bd		_					
	3.5		purple grey,	loose, saturated			<u>3.5</u>					200+ UTP V
CE CE	-		(HOLE COLI	RE. 3.50 METRES. LAPSE)			_					
SERV							_					
VAIPU	<u>4.0</u>						<u>4.0</u>				+	
H10- V							_	- -				
H01-A	-						_	·····				
045- A	<u>4.5</u>						<u>4.5</u>	- -				
HAND AUGER LOG NL220045- AH01-AH10- WAIPU SERVICE CENTRE - CORNER SH1 AND MILLBROOK ROAD.	-						_	.				
LOG							_	 				
UGER	<u>5.0</u>						<u> </u>	<u> </u> -	·····		·	
AND A												
Ì				131 Lincoln Road, Henderson, Phor								

			CLIENT: Vaco Investments Limited	Millbr	ook F	Road			08
	iour responsive of e	out-effective engineers	Waipu		OOK F	nuau,	Silee		
	JT d: 7/4/2	2	Project No: NL220045 Coordinates: Ground Elevation: Water Level: 0.7m 7/04/2022			Shear Van Surface Co	e No - Calib onditions:	Near Level, Grass	40 - 3/02/2022
o DEPTH (m)	GRAPHIC LOG	"Guideline	Society Inc 2005	WATER LEVEL (m)	o DEPTH (m)	LIQUID LI PLASTIC 50 SHEAR S REMOULI	MIT LIMIT TRENGTH DED SHEA PENETROM	× □ 150 (%) 0 v R ⊙ r METER O p	LABORATORY TESTS
		orange spec (ALLUVIAL wet clayey SILT, streaks, stiff saturated high suction firm firm some fine to END OF BOI	minor fine sand, light orange grey, orange wet to saturated, moderately plastic , wet to saturated, moderately plastic , poor recovery medium sand, light grey RE. 2.30 METRES.	1 1 1 1		9 r 39 V 0 r 6 29 r 7 22 r 7 22 r 15 22 r 15	54 V	150 (kPa)	
4.5 4.5 – – – 5.0					<u>4.5</u> 				
	ill Type: ill Type: illed By: ate Started ate Finishu (W) HLd30 0.0 	Vor repeatide & c ill Type: 50mr illed By: JT ate Started: 7/4/2 (w) HL 0.0 Max 0.0 Max 0.0 Max 0.0 Max 0.0 Max 0.0 Max 0.5 X X X	illed By: JT ate Started: 7/4/22 ate Finished: 7/4/22 (E) Y H H H H H H H H H H H H H	Solit&Rock Consultants:	IN Type: Somm0 Hana Auger Project No: NL22005 IN Type: Somm0 Hana Auger Project No: NL22005 IN Type: Somm0 Hana Auger Project No: NL22005 Interpretation 7/422 Ground Elevation: NL22005 Interpretation 7/422 Ground Elevation: Society Inc 2005 Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use" United to the society Inc 2005 Interpretation "OPSOIL Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use" Interpretation "OPSOIL" Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use" Interpretation "OPSOIL" "Interpretation" Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use" Interpretation "OPSOIL" "Interpretation" "Guidelines for Field Description for Soil and Rock in Engineering Use" Interpretation "OPSOIL" "Interpretation" "Society Inc 2005 Interpretation "Society Inc 2005 "Society Inc 2005 "Society Inc 2005 Interpretation "Society Inc 2005 "Society Inc 2005 "Society Inc 2005<	Operation Operation PROJECT: Genetachnical Investigation, 47 Millbrook F If Type: Somm@ Hand Auger Project N:: NL22005 If Web F:: .7 .7 .7 If Web F:: .7	In Proceeded and Algoring Hand Algoring Project No. NL220015 Logged By In Proceeded and Algoring Hand Algoring Project No. NL220015 Logged By In Proceeded and Algoring Hand Algoring Project No. NL220015 Logged By In Proceeded and Algoring Hand Algoring Project No. NL220015 Sender Variantian In Proceeded Algoring Hand Hand Algoring Hand Algoring Hand Algoring Hand Algorin	Solid Back Consultants PROJECT: Gootechnical Investigation, 47 Millbrook Road, Wajpu Shee If grow of the dugs Some the dugs PROJECT: Gootechnical Investigation, 47 Millbrook Road, Wajpu Shee Kensel If grow of the dugs Some the dugs Protect No: Same two No: Call Sector No: Same two No: Call Sector No: If grow of the dugs 70: Coordinate: Coordinate: Same two No: If grow of the dugs 70: Coordinate: Coordinate: Same two No: If grow of the dugs Soil description in accordance with the NZ Geotechnical Society income specific firm, moist to some fine to medium sand, grey, or one group costs; firm, moist to wet, slightly plastic If grow of the dugs If grow of the dugs Soil description, poor recovery If grow of the dugs If grow of the dugs If grow of the dugs Some fine to medium sand, light grey If grow of the dugs If grow of the dugs If grow of the dugs Some fine to medium sand, light grey If grow of the dugs If grow of the dugs If grow of the dugs Some fine to medium sand, light grey If grow of the dugs If grow of the dugs If grow of the dugs Some fine to medium sand, light grey If grow of the dugs If grow of the dugs If grow of the dugs Some fine to medium sand, light grey If grow of the dugs If grow o	PROJECT: Geotechnical Investigation, 47 Millbrook Road, IS-Net 1 of 1 Inter Dr. John State 1 John State 1 <thjohn 1<="" state="" th=""> John State 1 <th< td=""></th<></thjohn>

1			Consultants	CLIENT: Vaco Investments Limited PROJECT: Geotechnical Investigation, 4	7 Mill	lbr	ook F	Road.		jer Hole		109
		,		Waipu	/ 10111		oon	iouu,	One		01 1	
Di Da	rill Type: rilled By: ate Starte ate Finish	RH d: 7/4/		Project No: NL220045 Coordinates: Ground Elevation: Water Level: 0.6m 7/04/2022				Logged By Shear Var Surface C	ne No - Ca		ate: GEO1 .evel, Gras	19 - 10/03/2021 s
STRATIGRAPHY	o DEPTH (m)	GRAPHIC LOG		ion in accordance with the NZ Geotechnical Society Inc 2005 is for Field Description of Soil and Rock in Engineering Use"		WAIEK LEVEL (M)	S DEPTH (m)	NATURAI LIQUID LI PLASTIC 50 SHEAR S REMOUL POCKET 50	IMIT LIMIT TRENGT DED SHE PENETR	TH EAR COMETER	T △ ★ □ 50 (%) ○ v ⊙ p 50 (kPa)	⊔ S ⊢
TS		<u>x1, x1,</u>	TOPSOIL				0.0			·····		
		× × × × × ×	SILT, some grey, stiff, m DEPOSITS)	fine sand to sandy, minor clay, yellowish light oist, non to slightly plastic (ALLUVIAL		7/04/2022				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	
	<u>0.5</u> —	× × × × × × × ×	clayey SILT,	trace fine sand, white grey, orange streaks, noderately plastic	_	Z.	<u>0.</u> 9, —	•	59 V			
			saturated, h	white grey, occasional orange streaks, stiff, ighly plastic black speckles			<u> </u>		8.V			
13/4/22							_	• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	
2013.GDT	<u>1.5</u>		firm					16 r 39 \	V			-
PU- 2022-04-11.GPJ S+R_ TAURANGA GROUP	-		soft to firm				-			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	
WAIPU- 2022-04-11.GPJ TAURANGA GR	<u>2.0</u> 						<u>2.ð</u> 	● <u>26 V</u>				
MAI	 2.5		minor fine sa	and, bluish white, occasional reddish dark aks, stiff			 2. <u>5</u>	• · · · · · · · · · · · · · · · · · · ·	53 V			
BROOK F	-	× ·× ·× ·× × ·×	SILT, some light grey, st	fine to medium sand to sandy, some clay, bluis iff, saturated, slightly plastic	sh		_					
		× × × × × ×	─ stiff	um sandy SILT, bluish grey, greenish blue, ver non to slightly plastic	y					101 V		
RNER SH1 AN		× × × × × × × × × × × × × × × × × × ×	minor cray, r				_	•	· · · · · · · · · · · · · · · · · · ·			-
ENTRE - COF		× × × ×	fine to mediu black, dark p	um SAND, some silt, dark grey, organic staine ourple, medium dense, saturated	k				· · · · · · · · · · · · · · · · · · ·			200+ UTP V
I SERVICE C	-		END OF BOI (HOLE COLL	RE. 3.70 METRES. APSE)			-	• • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	
AH10- WAIPL	<u>4.0</u>						<u>4.0</u> 	· · · · · · · · · · · · · · · · · · ·				- - -
0045- AH01-/								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
HAND AUGER LOG NL220045- AH01-AH10- WAIPU SERVICE CENTRE - CORNER SH1 AND MILLBROOK ROAD	-						-	· · · · · · · · · · · · · · · · · · ·				
ND AUGER	<u> </u>											-

			Consultants cost-effective engineers	CLIENT: Vaco Investments Limited PROJECT: Geotechnical Investigation, 47	Millb	rook F	Road,	Auger Hol Sheet 1		0
Dri Da	II Type: Iled By: te Starte te Finish	JT d: 7/4/2		Waipu Project No: NL220045 Coordinates: Ground Elevation: Water Level: 2.9m 7/04/2022			Logged By: Shear Vane Surface Co	e No - Calibration	Date: GEO74) - 3/02/2022
STRATIGRAPHY	DEPTH (m)	GRAPHIC LOG	Soil descript "Guideline	tion in accordance with the NZ Geotechnical Society Inc 2005 s for Field Description of Soil and Rock in Engineering Use"	WATER LEVEL (m)	O DEPTH (m)	LIQUID LIN PLASTIC L 50 SHEAR ST REMOULD POCKET F	LIMIT 100	×□ 150 (%) ○ v ⊙ r	LABORATORY TESTS
HAND AUGER LOG NL220045- AH01-AH10- WAIPU SERVICE CENTRE - CORNER SH1 AND MILLBROOK ROAD, WAIPU- 2022-04-11.GPJ S+R_2013.GDT 13/4/22 TAURANGA GROUP			streaks, stiff	RE. 3.00 METRES.		000 		100 66 V 62 V 58 V 122 70 V		
HAND AUG	<u>5.0</u>			131 Lincoln Road. Henderson. Phone:						

 Level 1, 131 Lincoln Road, Waitakere 0612
 PO Box 21-424 Henderson, Waitakere 0650
 09 835 1740
 info@soilandrock.co.nz www.soilandrock.co.nz

SCALA PENETROMETER SHEET - TABLE OF BLOWS PER INCREMENT

JOB NO: NL220045

JOB NAME: 47 Millbrook Road, Waipu

TESTED BY: JT / RH

DATE: 06-07 /04/2022

Depth of									
	AH01	Con't	AH02	Con't	AH03	Con't	AH04	Con't	
Penetration [mm]	ANUT	Cont	ALIOZ	Cont	Anus	Cont	An04	Cont	
DEPTH START[m]	3.40	5.40	3.85	5.85	3.50	5.50	3.15	5.15	
50 mm	SUNK	7	2	7	2	7	2	8	
100		7	4	11	3	8	3	7	
150		8	4	13	4	9	3	7	
200	•	6	3	13	4	10	4	7	
250	2	6	6	15	3	11	3	6	
300	2	7	6	15	2	10	4	5	
350	3	6	7	-	2	10	4	6	
400	3	6	3		1	10	4	6	
450	3	6	2		2		5	7	
500	3	7	1		2		4	7	
550	3	7	2		2		3	6	
600	4	10	1		1		3	6	
650	3	10	2		1		2	7	
700	2	10	1		1		2	7	
750	3	10	2		2		3	7	
800	4	10	2		2		3	10	
850	5		1		2		3	9	
900	5		2		3		3	10	
950	3		2		3		3	11	
1000	4		3		3		4	11	
1050	4		5		2		3	11	
1100	3		7		3		4	11	
1150	3		6		4		4		
1200	3		6		5		4		
1250	4		7		5		4		
1300	3		8		6		4		
1350	4		8		6		4		
1400	5		7		6		4		
1450	5		5		6		5		
1500	5		5		5		6		
1550	7		5		5		6		
1600	7		4		5		5		
1650	6		5		5		7		
1700	6		5		5		8		
1750	6		4		5		7		
1800	8		6		5		7		
1850	8		5		7		 5		
1900	9		6		8		7		
1950	8		6		7		 7		
2000	9		6		7	_	7		
DEPTH END [m]		6.20		6.15		5.90		6.25	

 Level 1, 131 Lincoln Road, Waitakere 0612
 PO Box 21-424 Henderson, Waitakere 0650
 09 835 1740
 info@soilandrock.co.nz www.soilandrock.co.nz

SCALA PENETROMETER SHEET - TABLE OF BLOWS PER INCREMENT

JOB NO: NL220045

JOB NAME: 47 Millbrook Road, Waipu

TESTED BY: JT / RH

DATE: 06-07 /04/2022

Depth of								
Penetration [mm]	AH05	Con't	AH06	Con't	AH07	Con't	AH08	
DEPTH START[m]	3.15	5.15	4.00	6.00	3.50	5.50	2.30	
50 mm	0.5	7	0.5	6	SUNK	10	1	
100	0.5	8	0.5	7		10	1	
150	1	8	1	7		10	1	
200	0.5	6	0.5	6			1	
250	0.5	6	0.5	7			1	
300	1	5	0.5	10	•		2	
350	1	5	0.5	10	2		2	
400	1	4	1	11	4		2	
450	1	4	1	10	4		4	
500	1	4	1	11	6		5	
550	1	4	1		4		5	
600	1	5	1		4		5	
650	1	6	1		5		3	
700	1	5	1		6		3	
750	1	6	1		4		4	
800	2	5	2		3		4	
850	2	6	2		4		8	
900	3	8	2		7		8	
950	4	8	2		7		8	
1000	5	8	3		8		8	
1050	5	8	3		7		9	
1100	6	10	3		6		8	
1150	6	10	3		3		9	
1200	5	10	3		3		9	
1250	4	10	4		3		8	
1300	3	10	3		3		10	
1350	3		4		3		10	
1400	2		4		5		14	
1450	3		4		4		11	
1500	3		4		5		10	
1550	4		4		6			
1600	3		4		6			
1650	3		5		5			
1700	4		4		6			
1750	3		4		6			
1800	5		4		6			
1850	5		5		8			
1900	6		5		9			
1950	6		4		11			
2000	6		6		10			
DEPTH END [m] 🛛 🗭		6.45		6.50		5.65	3.80	

 Level 1, 131 Lincoln Road, Waitakere 0612
 PO Box 21-424 Henderson, Waitakere 0650
 09 835 1740
 info@soilandrock.co.nz www.soilandrock.co.nz

SCALA PENETROMETER SHEET - TABLE OF BLOWS PER INCREMENT

JOB NO: NL220045

JOB NAME: 47 Millbrook Road, Waipu

TESTED BY: JT / RH

DATE: 06-07 /04/2022

Depth of Penetration [mm]	AH09	Con't	AH10				
DEPTH START[m] 🗭	3.70	5.70	3.00				
50 mm	5	6	SUN	κ			
100	2	6					
150	0.5	7					
200	0.5	7	+				
250	0.5	8	1				
300	0.5	7	2				
350	1	8	3				
400	1	10	3				
450	1	10	4				
500	1	10	6				
550	0.5	10	7				
600	0.5	10	6				
650	0.5		5				
700	0.5		6				
750	SUNK		2				
800			2				
850			3				
900			3				
950			2				
1000	*		3				
1050	1		5				
1100	2		6				
1150	2		6				
1200	2		7				
1250	2		6				
1300	2		3				
1350	3		5				
1400	4		6				
1450	5		6				
1500	4		10				
1550	4		10				
1600	5		12				
1650	4		11				
1700	5		12				
1750	4						
1800	4						
1850	4						
1900	5						
1950	5						
2000	5						
DEPTH END [m] 🔹		6.30	4.70				

 289 Lincoln Road, Waitakere 0612
 PO Box 21-424 Henderson, Waitakere 0650
 09 835 1740
 info@soilandrock.co.nz www.soilandrock.co.nz

SCALA PENETROMETER SHEET - TABLE OF BLOWS PER INCREMENT

JOB NO: NL220045

TESTED BY: JT/RH

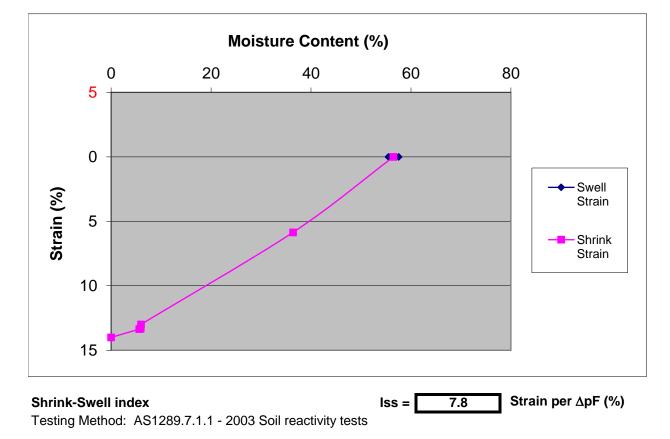
JOB NAME: Waipu Service Centre, Waipu

DATE: 6/04/2022

	-			-							
Depth of Penetration [mm]	SC01	SC02	SC03	SC04	SC05	SC06	SC07	SC08	SC09	SC10	
DEPTH START[m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
50 mm	1	2	1	1	1	1	1	2	1	0.5	
100	1	1	1	1	2	1	1	2	1	0.5	
150	2	2	1	1	2	1	1	2	0.5	1	
200	1	1	1	1	2	2	2	3	0.5	1	
250	2	2	1	0.5	1	1	2	2	1	1	
300	1	1	1	0.5	2	1	1	2	1	1	
350	2	1	1	1	2	1	1	2	1	1	
400	1	2	1	1	2	1	1	1	1	1	
450	1	1	1	1	2	0.5	2	1	1	0.5	
500	1	2	1	1	2	0.5	1	2	1	0.5	
550	1	2	1	1	2	0.5	1	1	1	1	
600	1	1	1	1	2	0.5	1	2	1	1	
650	2	1	1	0.5	2	1	1	1	0.5	1	
700	1	2	1	0.5	2	1	1	1	0.5	1	
750	1	1	0.5	0.5	2	0.5	1	2	1	0.5	
800	1	2	0.5	0.5	2	0.5	1	1	1	0.5	
850	1	2	1	1	2	0.5	1	1	1	0.5	
900	1	2	1	1	2	0.5	1	2	1	0.5	
950											
1000											
1050											
1100											
1150											
1200											
1250											
1300											
1350											
1400											
1450											
1500											
1550											
1600											
1650											
1700											
1750											
1800											
1850											
1900											
1950											
2000											
DEPTH END [m] 🛛 🗭	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	

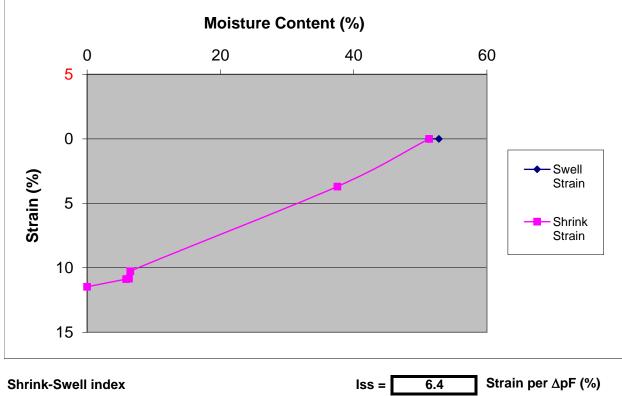
		Rock Consultants	CLIENT: Vaco Investments Li			N 4111-				uger Hole No	
		responsive & cost-effective engineers	PROJECT: Geotechnical Investi Waipu	-	on, 47		rook H	-			1
Di Da	rill Type: rilled By: ate Started: ate Finished	75mmØ Hand Auger RH 7/4/22 7/4/22	Project No: NL22004 Coordinates: Ground Elevation: Water Level: 0.6m 7/0-		2						: GEO119 - 10/03/2021 el, Grass
STRATIGRAPHY	GRAPHIC LOG	"Guidelines for Fie E	ccordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in Engineering Use"	WATER LEVEL (m)	e DEPTH (m)	SAMPLE TYPE	c_u / SPT	DRILLING METHOD	RECOVERY (%)		E PIEZOMETER 32mm
TS	$\frac{\sqrt{1}}{1} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$	TOPSOIL									—ТОР САР
		light grey, stiff, mo (ALLUVIAL DEPC clayey SILT, trace streaks, stiff, mois saturated	fine sand, white grey, orange st, moderately plastic	-104/2022	 0.5		V,59 VR,0			4-	BENTONITE SEAL
13/4/22		silty CLAY, white stiff, saturated, hi occasional black			 		V,48 VR,3				FILTER PACK
2013.GDT		firm			 		V,39 VR,16				
TAURANGA GROUP		soft to firm			 		V,26 VR,3				
MILLBHOOK HUAU,		 orange streaks, s SILT, some fine to bluish light grey, s 	bluish white, occasional reddish dark tiff o medium sand to sandy, some clay, stiff, saturated, slightly plastic andy SILT, bluish grey, greenish blue,		<u>2.5</u> 		V,53 VR,1				SLOTTED PIPE WITH FILTER SOCK
CORNER SHI AND		minor clay, non to			<u>3.0</u> 		V,101 VR,13				
		END OF BORE. 3 (HOLE COLLAPS)			<u>3.5</u> 		V,200+ UTP				
NL220045- AH01-AH10- WAIPU SERVICE CENTRE - CORNER SH1 AND MILLBROOK ROAD,			-,		 4.0 						
		_			 4.5						
CONTAM AH WELL		_									

		Rock Consultants	CLIENT: Vaco Investments L PROJECT: Geotechnical Inves			Millb	rook B	oad	Auger Hole No: PZ02 Sheet 1 of 1
		esponsino et onstruitenone engineers	Waipu	ligalio	л, 47			uau,	Sheet 1 01 1
Dril Dat	ll Type: lled By: te Started: te Finished:	75mmØ Hand Auger JT 7/4/22 7/4/22	Project No: NL2200 Coordinates: Ground Elevation: Water Level: 2.9m 7/		2				By: JT /ane No - Calibration Date: GEO740 - 3/02/2022 Conditions: Near Level, Grass
STRATIGRAPHY	GRAPHIC LOG	Guidelines for Fie	ccordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in Engineering Use"	WATER LEVEL (m)	o DEPTH (m)	SAMPLE TYPE	C _u / SPT	DRILLING METHOD	STANDPIPE PIEZOMETER Ø32mm
TS	× ×	TOPSOIL SILT. some clay.	some fine to medium sand, grey,	-	0.0				ТОР САР
TAURANGA GROUP	<pre></pre>	orange streaks, s DEPOSITS) clayey SILT, trace stiff, moist, moder wet grey, firm	tiff, moist, slightly plastic (ALLUVIAL e fine sand, grey, orange mottles, rately plastic	7/04/2022			V,96 VR,29 V,62 VR,25 VR,25 VR,22 V,35 VR,12 V,35 VR,12		SLOTTED PIPE WITH FILTER SOCK
		saturated, no reco END OF BORE. 3 (HOLE COLLAPS)	.00 METRES.		3.0 		V,70 VR,17		

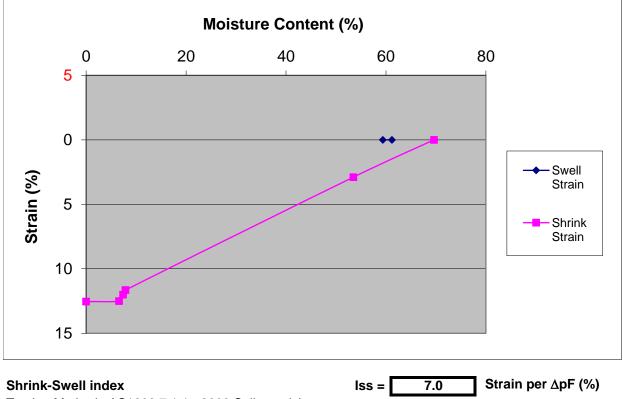


Appendix C

Laboratory Test Results

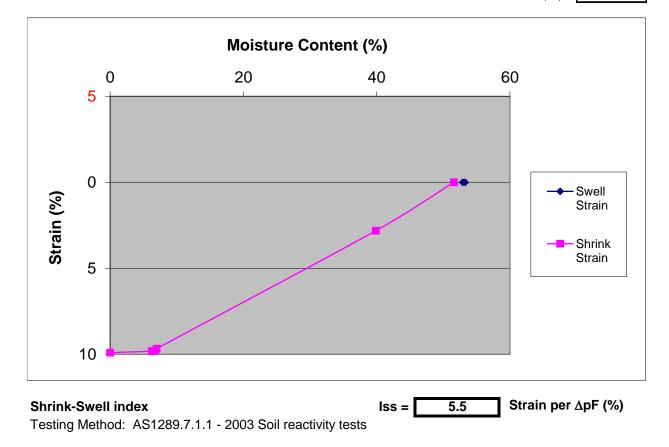

	Consultants	Level 1, 131 Lincoln Road, Waitakere 0612 PO Box 21-424 Henderson, Waitakere 0650 09 835 1740 Fax 09 835 1847 www.soilandrock.co.nz	
			SS01
	Shrink-Swe	ell Test Results	
Job Name: Date: Sample Location: Sampling method: Sampling depth (m): Sample condition:	47 Millbrook Road, Waip 12-Apr-22 SS01 Push Tube 0.5-0.9 Good	bu Job No: Tested By: Date Sampled: Sampled By: Inert inclusions (%): Extent of cracking (%): Extent of crumbling (%):	NL220045 TDS 07-Apr-22 RH <1 <1 <1
Sample description:	silty CLAY, light grey bro (NATURAL)	own, orange streaks, very stiff, moist, high	ly plastic
Wet Density		γ (t/m ³) :	= 1.64
Dry Density		γ_{d} (t/m ³)	
Shrinkage Test			
er mange i eer		Initial moisture content (%)	= 56.5
	€ _{sh} ∶	= Magnitude of total shrinkage strain (%) :	= 14.0
Swell Test			
	8	s_{sw} = Magnitude of the swelling strain (%) :	-0.2
(Note	: The ϵ_{sw} value is negative i	f the sample has undergone consolidation	ı)
		Initial moisture content (%)	= 55.5
		Final moisture content (%)	- 57.6

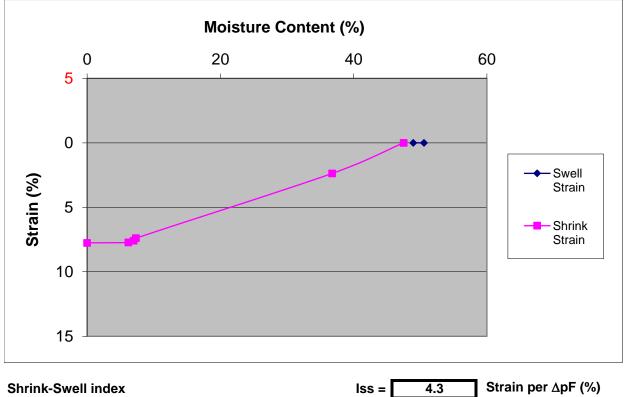
Final moisture content (%) = 57.6


Soil&Rock Consultants		Level 1, 131 Lincoln Road, Waitakere 0612 PO Box 21-424 Henderson, Waitakere 0650 09 835 1740 Fax 09 835 1847 www.soilandrock.co.nz			
			SS02		
Shrink-Swell Test Results					
Job Name: Date: Sample Location: Sampling method: Sampling depth (m): Sample condition:	47 Millbrook Road, Wa 12-Apr-22 SS02 Push Tube 0.55-0.9 Good	Tested By: Date Sampled: Sampled By: Inert inclusions (%): Extent of cracking (%):	NL220045 TDS 07-Apr-22 RH 1 0 0		
Sample description:	silty CLAY, light brown, (NATURAL)	grey, orange streaks, very stiff, moist, highly	y plastic		
Wet Density Dry Density		γ (t/m ³) = γ_{d} (t/m ³) =	1.69 1.12		
Shrinkage Test					
-		Initial moisture content (%) =	51.3		
	€ _{sh}	n = Magnitude of total shrinkage strain (%) =	11.5		
Swell Test					
		ϵ_{sw} = Magnitude of the swelling strain (%) =	-0.5		
(Note: The ϵ_{sw} value is negative if the sample has undergone consolidation)					
		Initial moisture content (%) =	51.3		
		Final moisture content (%) =	52.8		

Final moisture content (%) = 52.8

Testing Method: AS1289.7.1.1 - 2003 Soil reactivity tests


Soil&Rock Consultants Your responsive & cost-effective engineers		Level 1, 131 Lincoln Road, Waitakere 0612 PO Box 21-424 Henderson, Waitakere 0650 09 835 1740 Fax 09 835 1847 www.soilandrock.co.nz	SS03
	Shrink-Swell T	est Results	
Job Name: Date: Sample Location: Sampling method: Sampling depth (m): Sample condition:	47 Millbrook Road, Waipu 12-Apr-22 SS03 Push Tube 0.6-0.95 Good	Job No: Tested By: Date Sampled: Sampled By: Inert inclusions (%): Extent of cracking (%): Extent of crumbling (%):	NL220045 TDS 07-Apr-22 JT 1 1 <5
Sample description:	silty CLAY, orange, light gre (NATURAL)	y mottles,stiff, saturated, highly plastic	
Wet Density Dry Density		γ (t/m³) = γ _d (t/m³) =	
Shrinkage Test			
	$\epsilon_{sh} = M_{t}$	Initial moisture content (%) = agnitude of total shrinkage strain (%) =	
Swell Test	£	Magnitude of the swelling strain (%) =	-0.7
(Note: 7		e sample has undergone consolidation Initial moisture content (%) = Final moisture content (%) =) = 61.2


Testing Method: AS1289.7.1.1 - 2003 Soil reactivity tests

Soil&Rock Consultants Your responsive & cost-effective engineers		Level 1, 131 Lincoln Road, Waitakere 0612 PO Box 21-424 Henderson, Waitakere 0650 09 835 1740 Fax 09 835 1847 www.soilandrock.co.nz			
			SS04		
Shrink-Swell Test Results					
Job Name: Date: Sample Location: Sampling method: Sampling depth (m): Sample condition:	47 Millbrook Road, Waipu 12-Apr-22 SS04 Push Tube 0.5-0.85 Good	Job No: Tested By: Date Sampled: Sampled By: Inert inclusions (%): Extent of cracking (%): Extent of crumbling (%):	NL220045 TDS 07-Apr-22 JT <1 <1 <1		
Sample description:	silty CLAY, brownish grey (NATURAL)	, orange streaks, very stiff, moist, highly	plastic		
Wet Density		γ (t/m ³) :	= 1.72		
Dry Density		γ_d (t/m ³)			
Shrinkage Test			,		
en in age i eet		Initial moisture content (%)	= 51.6		
	$\varepsilon_{sh} =$	Magnitude of total shrinkage strain (%) =	= 9.9		
Swell Test					
	ε _s	$_{\rm w}$ = Magnitude of the swelling strain (%) =	-0.1		
(Note: The ε_{sw} value is negative if the sample has undergone consolidation)					
		Initial moisture content (%)			
		Final moisture content (%)	- 52.0		

Final moisture content (%) = 52.9

Soil&Rock Consultants		Level 1, 131 Lincoln Road, Waitakere 0612 PO Box 21-424 Henderson, Waitakere 0650 09 835 1740 Fax 09 835 1847 www.soilandrock.co.nz		
			SS05	
Shrink-Swell Test Results				
Job Name: Date: Sample Location: Sampling method: Sampling depth (m): Sample condition:	47 Millbrook Road, W 12-Apr-22 SS05 Push Tube 0.4-0.8 Good	aipu Job No: Tested By: Date Sampled: Sampled By: Inert inclusions (%): Extent of cracking (%): Extent of crumbling (%):	NL220045 TDS 07-Apr-22 RH <1 1 1	
Sample description:	silty CLAY, brownish (moist, highly plastic (N	grey, orange mottles, dark brown speckles, v NATURAL)	ery stiff,	
Wet Density		γ (t/m ³) =	= 1.66	
Dry Density		γ_{d} (t/m ³) =		
Shrinkage Test				
		Initial moisture content (%) =	47.5	
	3	_{sh} = Magnitude of total shrinkage strain (%) =	7.8	
Swell Test				
		ϵ_{sw} = Magnitude of the swelling strain (%) =	0.0	
(Note: The ε_{sw} value is negative if the sample has undergone consolidation)				
		Initial moisture content (%) =		
		Final moisture content (%) =	= 50.6	

Testing Method: AS1289.7.1.1 - 2003 Soil reactivity tests